ovn-architecture(7) OVN Manual ovn-architecture(7)

NAME

ovn-architecture — Open Virtual Network architecture

DESCRIPTION
OVN, the Open Virtual Network, is a system to support logical network abstraction in virtual machine and
container environments. OVN complements the existing capabilities of OVS to add native support for logi-
cal network abstractions, such as logical L2 and L3 overlays and security groups. Services such as DHCP
are also desirable features. Just like OVS, OVN’s design goal is to have a production-quality implementa-
tion that can operate at significant scale.

A physical network comprises physical wires, switches, and routers. A virtual network extends a physical
network into a hypervisor or container platform, bridging VMs or containers into the physical network. An
OVN logical network is a network implemented in software that is insulated from physical (and thus vir-
tual) networks by tunnels or other encapsulations. This allows IP and other address spaces used in logical
networks to overlap with those used on physical networks without causing conflicts. Logical network
topologies can be arranged without regard for the topologies of the physical networks on which they run.
Thus, VMs that are part of a logical network can migrate from one physical machine to another without
network disruption. See Logical Networks, below, for more information.

The encapsulation layer prevents VMs and containers connected to a logical network from communicating
with nodes on physical networks. For clustering VMs and containers, this can be acceptable or even desir-
able, but in many cases VMs and containers do need connectivity to physical networks. OVN provides mul-
tiple forms of gateways for this purpose. See Gateways, below, for more information.

An OVN deployment consists of several components:

. A Cloud Management System (CMS), which is OVN’s ultimate client (via its users and
administrators). OVN integration requires installing a CMS-specific plugin and related
software (see below). OVN initially targets OpenStack as CMS.

We generally speak of “the” CMS, but one can imagine scenarios in which multiple
CMSes manage different parts of an OVN deployment.

. An OVN Database physical or virtual node (or, eventually, cluster) installed in a central
location.
. One or more (usually many) hypervisors. Hypervisors must run Open vSwitch and imple-

ment the interface described in Documentation/topics/integration.rst in the OVN
source tree. Any hypervisor platform supported by Open vSwitch is acceptable.

. Zero or more gateways. A gateway extends a tunnel-based logical network into a physical
network by bidirectionally forwarding packets between tunnels and a physical Ethernet
port. This allows non-virtualized machines to participate in logical networks. A gateway
may be a physical host, a virtual machine, or an ASIC-based hardware switch that sup-
ports the vtep(5) schema.

Hypervisors and gateways are together called transport node or chassis.

The diagram below shows how the major components of OVN and related software interact. Starting at the
top of the diagram, we have:

. The Cloud Management System, as defined above.

. The OVN/CMS Plugin is the component of the CMS that interfaces to OVN. In Open-
Stack, this is a Neutron plugin. The plugin’s main purpose is to translate the CMS’s
notion of logical network configuration, stored in the CMS’s configuration database in a
CMS-specific format, into an intermediate representation understood by OVN.

This component is necessarily CMS-specific, so a new plugin needs to be developed for
each CMS that is integrated with OVN. All of the components below this one in the dia-
gram are CMS-independent.

OVN 21.06.1 OVN Architecture 1

ovn-architecture(7)

OVN Manual ovn-architecture(7)

The OVN Northbound Database receives the intermediate representation of logical net-
work configuration passed down by the OVN/CMS Plugin. The database schema is meant
to be “impedance matched” with the concepts used in a CMS, so that it directly supports
notions of logical switches, routers, ACLs, and so on. See ovh—nb(5) for details.

The OVN Northbound Database has only two clients: the OVN/CMS Plugin above it and
ovn—northd below it.

ovn—northd(8) connects to the OVN Northbound Database above it and the OVN South-
bound Database below it. It translates the logical network configuration in terms of con-
ventional network concepts, taken from the OVN Northbound Database, into logical data-
path flows in the OVN Southbound Database below it.

The OVN Southbound Database is the center of the system. Its clients are ovh—northd(8)
above it and ovn—controller(8) on every transport node below it.

The OVN Southbound Database contains three kinds of data: Physical Network (PN)
tables that specify how to reach hypervisor and other nodes, Logical Network (LN) tables
that describe the logical network in terms of “logical datapath flows,” and Binding tables
that link logical network components’ locations to the physical network. The hypervisors
populate the PN and Port_Binding tables, whereas ovn—northd(8) populates the LN
tables.

OVN Southbound Database performance must scale with the number of transport nodes.
This will likely require some work on ovsdb-server(l) as we encounter bottlenecks.
Clustering for availability may be needed.

The remaining components are replicated onto each hypervisor:

OVN 21.06.1

ovn—controller(8) is OVN’s agent on each hypervisor and software gateway. North-
bound, it connects to the OVN Southbound Database to learn about OVN configuration
and status and to populate the PN table and the Chassis column in Binding table with the
hypervisor’s status. Southbound, it connects to ovs—vswitchd(8) as an OpenFlow con-
troller, for control over network traffic, and to the local ovsdb—server(1) to allow it to
monitor and control Open vSwitch configuration.

ovs—vswitchd(8) and ovsdb—server(1) are conventional components of Open vSwitch.

OVN/CMS Plugin

| |
| |
| |
| |
| OVN Northbound DB |
| |
| |
| |
| |

ovn—northd

Fomm | -————————— +
|
|
o +
OVN Southbound DB |
o +
|
|
fom fom +
OVN Architecture 2

ovn-architecture(7) OVN Manual ovn-architecture(7)

ovn—-controller		ovn—-controller				

ovs-vswitchd ovsdb-server

ovs-vswitchd ovsdb-server

Information Flow in OVN
Configuration data in OVN flows from north to south. The CMS, through its OVN/CMS plugin, passes the
logical network configuration to ovn—northd via the northbound database. In turn, ovn—northd compiles
the configuration into a lower-level form and passes it to all of the chassis via the southbound database.

Status information in OVN flows from south to north. OVN currently provides only a few forms of status
information. First, ovh—northd populates the up column in the northbound Logical_Switch_Port table: if
a logical port’s chassis column in the southbound Port_Binding table is nonempty, it sets up to true, oth-
erwise to false. This allows the CMS to detect when a VM’s networking has come up.

Second, OVN provides feedback to the CMS on the realization of its configuration, that is, whether the con-
figuration provided by the CMS has taken effect. This feature requires the CMS to participate in a sequence
number protocol, which works the following way:

1. When the CMS updates the configuration in the northbound database, as part of the same
transaction, it increments the value of the nb_cfg column in the NB_Global table. (This is
only necessary if the CMS wants to know when the configuration has been realized.)

2. When ovn—-northd updates the southbound database based on a given snapshot of the
northbound database, it copies nb_cfg from northbound NB_Global into the southbound
database SB_Global table, as part of the same transaction. (Thus, an observer monitoring
both databases can determine when the southbound database is caught up with the north-
bound.)

3. After ovn—northd receives confirmation from the southbound database server that its
changes have committed, it updates sb_cfg in the northbound NB_Global table to the
nb_cfg version that was pushed down. (Thus, the CMS or another observer can determine
when the southbound database is caught up without a connection to the southbound data-
base.)

4. The ovn—controller process on each chassis receives the updated southbound database,
with the updated nb_cfg. This process in turn updates the physical flows installed in the
chassis’s Open vSwitch instances. When it receives confirmation from Open vSwitch that
the physical flows have been updated, it updates nb_cfg in its own Chassis record in the
southbound database.

5. ovn—northd monitors the nb_cfg column in all of the Chassis records in the southbound
database. It keeps track of the minimum value among all the records and copies it into the
hv_cfg column in the northbound NB_Global table. (Thus, the CMS or another observer
can determine when all of the hypervisors have caught up to the northbound configuration.)

Chassis Setup
Each chassis in an OVN deployment must be configured with an Open vSwitch bridge dedicated for OVN’s
use, called the integration bridge. System startup scripts may create this bridge prior to starting ovn—con-
troller if desired. If this bridge does not exist when ovn-controller starts, it will be created automatically
with the default configuration suggested below. The ports on the integration bridge include:

OVN 21.06.1 OVN Architecture 3

ovn-architecture(7) OVN Manual ovn-architecture(7)

. On any chassis, tunnel ports that OVN uses to maintain logical network connectivity.
ovn—controller adds, updates, and removes these tunnel ports.

. On a hypervisor, any VIFs that are to be attached to logical networks. The hypervisor
itself, or the integration between Open vSwitch and the hypervisor (described in Docu-
mentation/topics/integration.rst) takes care of this. (This is not part of OVN or new to
OVN; this is pre-existing integration work that has already been done on hypervisors that
support OVS.)

. On a gateway, the physical port used for logical network connectivity. System startup
scripts add this port to the bridge prior to starting ovn—controller. This can be a patch
port to another bridge, instead of a physical port, in more sophisticated setups.

Other ports should not be attached to the integration bridge. In particular, physical ports attached to the
underlay network (as opposed to gateway ports, which are physical ports attached to logical networks) must
not be attached to the integration bridge. Underlay physical ports should instead be attached to a separate
Open vSwitch bridge (they need not be attached to any bridge at all, in fact).

The integration bridge should be configured as described below. The effect of each of these settings is docu-
mented in ovs—vswitchd.conf.db(5):

fail-mode=secure
Avoids switching packets between isolated logical networks before ovn—controller starts
up. See Controller Failure Settings in ovs—vsctl(8) for more information.

other—config:disable—in—band=true
Suppresses in-band control flows for the integration bridge. It would be unusual for such
flows to show up anyway, because OVN uses a local controller (over a Unix domain
socket) instead of a remote controller. It’s possible, however, for some other bridge in the
same system to have an in-band remote controller, and in that case this suppresses the
flows that in-band control would ordinarily set up. Refer to the documentation for more
information.

The customary name for the integration bridge is br—int, but another name may be used.

Logical Networks
Logical network concepts in OVN include logical switches and logical routers, the logical version of Ether-
net switches and IP routers, respectively. Like their physical cousins, logical switches and routers can be
connected into sophisticated topologies. Logical switches and routers are ordinarily purely logical entities,
that is, they are not associated or bound to any physical location, and they are implemented in a distributed
manner at each hypervisor that participates in OVN.

Logical switch ports (LSPs) are points of connectivity into and out of logical switches. There are many
kinds of logical switch ports. The most ordinary kind represent VIFs, that is, attachment points for VMs or
containers. A VIF logical port is associated with the physical location of its VM, which might change as the
VM migrates. (A VIF logical port can be associated with a VM that is powered down or suspended. Such a
logical port has no location and no connectivity.)

Logical router ports (LRPs) are points of connectivity into and out of logical routers. A LRP connects a
logical router either to a logical switch or to another logical router. Logical routers only connect to VMs,
containers, and other network nodes indirectly, through logical switches.

Logical switches and logical routers have distinct kinds of logical ports, so properly speaking one should
usually talk about logical switch ports or logical router ports. However, an unqualified “logical port” usu-
ally refers to a logical switch port.

When a VM sends a packet to a VIF logical switch port, the Open vSwitch flow tables simulate the packet’s
journey through that logical switch and any other logical routers and logical switches that it might
encounter. This happens without transmitting the packet across any physical medium: the flow tables imple-
ment all of the switching and routing decisions and behavior. If the flow tables ultimately decide to output
the packet at a logical port attached to another hypervisor (or another kind of transport node), then that is
the time at which the packet is encapsulated for physical network transmission and sent.

OVN 21.06.1 OVN Architecture 4

ovn-architecture(7) OVN Manual ovn-architecture(7)

Logical Switch Port Types

OVN supports a number of kinds of logical switch ports. VIF ports that connect to VMs or containers,
described above, are the most ordinary kind of LSP. In the OVN northbound database, VIF ports have an
empty string for their type. This section describes some of the additional port types.

A router logical switch port connects a logical switch to a logical router, designating a particular LRP as its
peer.

A localnet logical switch port bridges a logical switch to a physical VLAN. A logical switch may have one
or more localnet ports. Such a logical switch is used in two scenarios:

. With one or more router logical switch ports, to attach L3 gateway routers and distrib-
uted gateways to a physical network.

. With one or more VIF logical switch ports, to attach VMs or containers directly to a
physical network. In this case, the logical switch is not really logical, since it is bridged to
the physical network rather than insulated from it, and therefore cannot have independent
but overlapping IP address namespaces, etc. A deployment might nevertheless choose
such a configuration to take advantage of the OVN control plane and features such as port

security and ACLs.
When a logical switch contains multiple localnet ports, the following is assumed.
. Each chassis has a bridge mapping for one of the localnet physical networks only.
. To facilitate interconnectivity between VIF ports of the switch that are located on differ-

ent chassis with different physical network connectivity, the fabric implements L3 routing
between these adjacent physical network segments.

Note: nothing said above implies that a chassis cannot be plugged to multiple physical networks as long as
they belong to different switches.

A localport logical switch port is a special kind of VIF logical switch port. These ports are present in every
chassis, not bound to any particular one. Traffic to such a port will never be forwarded through a tunnel, and
traffic from such a port is expected to be destined only to the same chassis, typically in response to a
request it received. OpenStack Neutron uses a localport port to serve metadata to VMs. A metadata proxy
process is attached to this port on every host and all VMs within the same network will reach it at the same
IP/MAC address without any traffic being sent over a tunnel. For further details, see the OpenStack docu-
mentation for networking-ovn.

LSP types vtep and 12gateway are used for gateways. See Gateways, below, for more information.
Implementation Details

These concepts are details of how OVN is implemented internally. They might still be of interest to users
and administrators.

Logical datapaths are an implementation detail of logical networks in the OVN southbound database.
ovn—northd translates each logical switch or router in the northbound database into a logical datapath in
the southbound database Datapath_Binding table.

For the most part, ovn—northd also translates each logical switch port in the OVN northbound database
into a record in the southbound database Port_Binding table. The latter table corresponds roughly to the
northbound Logical_Switch_Port table. It has multiple types of logical port bindings, of which many types
correspond directly to northbound LSP types. LSP types handled this way include VIF (empty string),
localnet, localport, vtep, and 12gateway.

The Port_Binding table has some types of port binding that do not correspond directly to logical switch
port types. The common is patch port bindings, known as logical patch ports. These port bindings always
occur in pairs, and a packet that enters on either side comes out on the other. ovh—northd connects logical
switches and logical routers together using logical patch ports.

Port bindings with types vtep, 12gateway, 13gateway, and chassisredirect are used for gateways. These are
explained in Gateways, below.

OVN 21.06.1 OVN Architecture 5

ovn-architecture(7) OVN Manual ovn-architecture(7)

Gateways
Gateways provide limited connectivity between logical networks and physical ones. They can also provide
connectivity between different OVN deployments. This section will focus on the former, and the latter will
be described in details in section OVN Deployments Interconnection.

OVN support multiple kinds of gateways.
VTEP Gateways

A “VTEP gateway” connects an OVN logical network to a physical (or virtual) switch that implements the
OVSDB VTEP schema that accompanies Open vSwitch. (The “VTEP gateway” term is a misnomer, since
a VTEP is just a VXLAN Tunnel Endpoint, but it is a well established name.) See Life Cycle of a VTEP
gateway, below, for more information.

The main intended use case for VTEP gateways is to attach physical servers to an OVN logical network
using a physical top-of-rack switch that supports the OVSDB VTEP schema.

L2 Gateways

A L2 gateway simply attaches a designated physical L2 segment available on some chassis to a logical net-
work. The physical network effectively becomes part of the logical network.

To set up a L2 gateway, the CMS adds an 12gateway LSP to an appropriate logical switch, setting LSP
options to name the chassis on which it should be bound. ovn—northd copies this configuration into a
southbound Port_Binding record. On the designated chassis, ovn—controller forwards packets appropri-
ately to and from the physical segment.

L2 gateway ports have features in common with localnet ports. However, with a localnet port, the physical
network becomes the transport between hypervisors. With an L2 gateway, packets are still transported
between hypervisors over tunnels and the 12gateway port is only used for the packets that are on the physi-
cal network. The application for L2 gateways is similar to that for VTEP gateways, e.g. to add non-virtual-
ized machines to a logical network, but L2 gateways do not require special support from top-of-rack hard-
ware switches.

L3 Gateway Routers

As described above under Logical Networks, ordinary OVN logical routers are distributed: they are not
implemented in a single place but rather in every hypervisor chassis. This is a problem for stateful services
such as SNAT and DNAT, which need to be implemented in a centralized manner.

To allow for this kind of functionality, OVN supports L3 gateway routers, which are OVN logical routers
that are implemented in a designated chassis. Gateway routers are typically used between distributed logical
routers and physical networks. The distributed logical router and the logical switches behind it, to which
VMs and containers attach, effectively reside on each hypervisor. The distributed router and the gateway
router are connected by another logical switch, sometimes referred to as a ““join” logical switch. (OVN log-
ical routers may be connected to one another directly, without an intervening switch, but the OVN imple-
mentation only supports gateway logical routers that are connected to logical switches. Using a join logical
switch also reduces the number of IP addresses needed on the distributed router.) On the other side, the
gateway router connects to another logical switch that has a localnet port connecting to the physical net-
work.

The following diagram shows a typical situation. One or more logical switches LS1, ..., LSn connect to dis-
tributed logical router LR1, which in turn connects through LSjoin to gateway logical router GLR, which
also connects to logical switch LSlocal, which includes a localnet port to attach to the physical network.

LSlocal

GLR

|
LSjoin
|

LR1

OVN 21.06.1 OVN Architecture 6

ovn-architecture(7) OVN Manual ovn-architecture(7)

To configure an L3 gateway router, the CMS sets options:chassis in the router’s northbound Logi-
cal_Router to the chassis’s name. In response, ovn—northd uses a special 13gateway port binding (instead
of a patch binding) in the southbound database to connect the logical router to its neighbors. In turn,
ovn—controller tunnels packets to this port binding to the designated L3 gateway chassis, instead of pro-
cessing them locally.

DNAT and SNAT rules may be associated with a gateway router, which provides a central location that can
handle one-to-many SNAT (aka IP masquerading). Distributed gateway ports, described below, also support
NAT.

Distributed Gateway Ports

A distributed gateway port is a logical router port that is specially configured to designate one distinguished
chassis, called the gateway chassis, for centralized processing. A distributed gateway port should connect to
a logical switch that has an LSP that connects externally, that is, either a localnet LSP or a connection to
another OVN deployment (see OVN Deployments Interconnection). Packets that traverse the distributed
gateway port are processed without involving the gateway chassis when they can be, but when needed they
do take an extra hop through it.

The following diagram illustrates the use of a distributed gateway port. A number of logical switches LS1,
..., LSn connect to distributed logical router LR1, which in turn connects through the distributed gateway
port to logical switch LSlocal that includes a localnet port to attach to the physical network.

LSlocal
|
LR1
|
+————t————+
| | |
LS1 ... LSn

ovn—northd creates two southbound Port_Binding records to represent a distributed gateway port, instead
of the usual one. One of these is a patch port binding named for the LRP, which is used for as much traffic
as it can. The other one is a port binding with type chassisredirect, named cr—port. The chassisredirect
port binding has one specialized job: when a packet is output to it, the flow table causes it to be tunneled to
the gateway chassis, at which point it is automatically output to the patch port binding. Thus, the flow table
can output to this port binding in cases where a particular task has to happen on the gateway chassis. The
chassisredirect port binding is not otherwise used (for example, it never receives packets).

The CMS may configure distributed gateway ports three different ways. See Distributed Gateway Ports in
the documentation for Logical_Router_Port in ovh—nb(5) for details.

Distributed gateway ports support high availability. When more than one chassis is specified, OVN only
uses one at a time as the gateway chassis. OVN uses BFD to monitor gateway connectivity, preferring the
highest-priority gateway that is online.

Physical VLAN MTU Issues
Consider the preceding diagram again:

LSlocal

OVN 21.06.1 OVN Architecture 7

ovn-architecture(7) OVN Manual ovn-architecture(7)

Lsl ... LSn

Suppose that each logical switch LS1, ..., LSn is bridged to a physical VLAN-tagged network attached to a
localnet port on LSlocal, over a distributed gateway port on LR1. If a packet originating on LSi is destined
to the external network, OVN sends it to the gateway chassis over a tunnel. There, the packet traverses
LR1’s logical router pipeline, possibly undergoes NAT, and eventually ends up at LSlocal’s localnet port. If
all of the physical links in the network have the same MTU, then the packet’s transit across a tunnel causes
an MTU problem: tunnel overhead prevents a packet that uses the full physical MTU from crossing the tun-
nel to the gateway chassis (without fragmentation).

OVN offers two solutions to this problem, the reside—on-redirect—chassis and redirect—type options.
Both solutions require each logical switch LS1, ..., LSn to include a localnet logical switch port LNI1, ...,
LNn respectively, that is present on each chassis. Both cause packets to be sent over the localnet ports
instead of tunnels. They differ in which packets—some or all—are sent this way. The most prominent tradeoff
between these options is that reside—on—redirect—chassis is easier to configure and that redirect—type per-
forms better for east-west traffic.

The first solution is the reside—on-redirect—chassis option for logical router ports. Setting this option on a
LRP from (e.g.) LS1 to LR1 disables forwarding from LS1 to LR1 except on the gateway chassis. On chas-
sis other than the gateway chassis, this single change means that packets that would otherwise have been
forwarded to LR1 are instead forwarded to LN1. The instance of LN1 on the gateway chassis then receives
the packet and forwards it to LR1. The packet traverses the LR1 logical router pipeline, possibly undergoes
NAT, and eventually ends up at LSlocal’s localnet port. The packet never traverses a tunnel, avoiding the
MTU issue.

This option has the further consequence of centralizing “distributed” logical router LR1, since no packets
are forwarded from LS1 to LR1 on any chassis other than the gateway chassis. Therefore, east-west traffic
passes through the gateway chassis, not just north-south. (The naive “fix” of allowing east-west traffic to
flow directly between chassis over LN1 does not work because routing sets the Ethernet source address to
LR1I’s source address. Seeing this single Ethernet source address originate from all of the chassis will con-
fuse the physical switch.)

Do not set the reside—on—redirect—chassis option on a distributed gateway port. In the diagram above, it
would be set on the LRPs connecting LS1, ..., LSn to LR1.

The second solution is the redirect—type option for distributed gateway ports. Setting this option to
bridged causes packets that are redirected to the gateway chassis to go over the localnet ports instead of
being tunneled. This option does not change how OVN treats packets not redirected to the gateway chassis.

The redirect—type option requires the administrator or the CMS to configure each participating chassis
with a unique Ethernet address for the logical router by setting ovn—chassis—mac—mappings in the Open
vSwitch database, for use by ovn—controller. This makes it more difficult to configure than reside—on—re-
direct—chassis.

Set the redirect—type option on a distributed gateway port.

Life Cycle of a VIF
Tables and their schemas presented in isolation are difficult to understand. Here’s an example.

A VIF on a hypervisor is a virtual network interface attached either to a VM or a container running directly
on that hypervisor (This is different from the interface of a container running inside a VM).

The steps in this example refer often to details of the OVN and OVN Northbound database schemas. Please
see ovn—sb(5) and ovn—nb(5), respectively, for the full story on these databases.

1. A VIF’s life cycle begins when a CMS administrator creates a new VIF using the CMS user
interface or API and adds it to a switch (one implemented by OVN as a logical switch). The
CMS updates its own configuration. This includes associating unique, persistent identifier
vif-id and Ethernet address mac with the VIF.

OVN 21.06.1 OVN Architecture 8

ovn-architecture(7)

OVN 21.06.1

10.

11.

12.

13.

OVN Manual ovn-architecture(7)

The CMS plugin updates the OVN Northbound database to include the new VIF, by adding
a row to the Logical_Switch_Port table. In the new row, name is vif-id, mac is mac,
switch points to the OVN logical switch’s Logical_Switch record, and other columns are
initialized appropriately.

ovn—northd receives the OVN Northbound database update. In turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN South-
bound database Logical_Flow table to reflect the new port, e.g. add a flow to recognize that
packets destined to the new port’s MAC address should be delivered to it, and update the
flow that delivers broadcast and multicast packets to include the new port. It also creates a
record in the Binding table and populates all its columns except the column that identifies
the chassis.

On every hypervisor, ovn—controller receives the Logical_Flow table updates that
ovn—northd made in the previous step. As long as the VM that owns the VIF is powered
off, ovn—controller cannot do much; it cannot, for example, arrange to send packets to or
receive packets from the VIF, because the VIF does not actually exist anywhere.

Eventually, a user powers on the VM that owns the VIF. On the hypervisor where the VM
is powered on, the integration between the hypervisor and Open vSwitch (described in
Documentation/topics/integration.rst) adds the VIF to the OVN integration bridge and
stores vif-id in external_ids:iface—id to indicate that the interface is an instantiation of the
new VIFE. (None of this code is new in OVN; this is pre-existing integration work that has
already been done on hypervisors that support OVS.)

On the hypervisor where the VM is powered on, ovn—controller notices exter-
nal_ids:iface—id in the new Interface. In response, in the OVN Southbound DB, it updates
the Binding table’s chassis column for the row that links the logical port from exter-
nal_ids: iface—id to the hypervisor. Afterward, ovn—controller updates the local hypervi-
sor’s OpenFlow tables so that packets to and from the VIF are properly handled.

Some CMS systems, including OpenStack, fully start a VM only when its networking is
ready. To support this, ovh—northd notices the chassis column updated for the row in
Binding table and pushes this upward by updating the up column in the OVN Northbound
database’s Logical_Switch_Port table to indicate that the VIF is now up. The CMS, if it
uses this feature, can then react by allowing the VM’s execution to proceed.

On every hypervisor but the one where the VIF resides, ovh—controller notices the com-
pletely populated row in the Binding table. This provides ovn—controller the physical
location of the logical port, so each instance updates the OpenFlow tables of its switch
(based on logical datapath flows in the OVN DB Logical_Flow table) so that packets to
and from the VIF can be properly handled via tunnels.

Eventually, a user powers off the VM that owns the VIF. On the hypervisor where the VM
was powered off, the VIF is deleted from the OVN integration bridge.

On the hypervisor where the VM was powered off, ovn—controller notices that the VIF
was deleted. In response, it removes the Chassis column content in the Binding table for
the logical port.

On every hypervisor, ovn—controller notices the empty Chassis column in the Binding ta-
ble’s row for the logical port. This means that ovn—controller no longer knows the physi-
cal location of the logical port, so each instance updates its OpenFlow table to reflect that.

Eventually, when the VIF (or its entire VM) is no longer needed by anyone, an administra-
tor deletes the VIF using the CMS user interface or API. The CMS updates its own config-
uration.

The CMS plugin removes the VIF from the OVN Northbound database, by deleting its row
in the Logical_Switch_Port table.

OVN Architecture 9

ovn-architecture(7) OVN Manual ovn-architecture(7)

14. ovn—-northd receives the OVN Northbound update and in turn updates the OVN South-
bound database accordingly, by removing or updating the rows from the OVN Southbound
database Logical_Flow table and Binding table that were related to the now-destroyed
VIF.

15. On every hypervisor, ovn—controller receives the Logical Flow table updates that
ovn—northd made in the previous step. ovn—controller updates OpenFlow tables to reflect
the update, although there may not be much to do, since the VIF had already become
unreachable when it was removed from the Binding table in a previous step.

Life Cycle of a Container Interface Inside a VM
OVN provides virtual network abstractions by converting information written in OVN_NB database to
OpenFlow flows in each hypervisor. Secure virtual networking for multi-tenants can only be provided if
OVN controller is the only entity that can modify flows in Open vSwitch. When the Open vSwitch integra-
tion bridge resides in the hypervisor, it is a fair assumption to make that tenant workloads running inside
VMs cannot make any changes to Open vSwitch flows.

If the infrastructure provider trusts the applications inside the containers not to break out and modify the
Open vSwitch flows, then containers can be run in hypervisors. This is also the case when containers are
run inside the VMs and Open vSwitch integration bridge with flows added by OVN controller resides in the
same VM. For both the above cases, the workflow is the same as explained with an example in the previous
section ("Life Cycle of a VIF").

This section talks about the life cycle of a container interface (CIF) when containers are created in the VMs
and the Open vSwitch integration bridge resides inside the hypervisor. In this case, even if a container
application breaks out, other tenants are not affected because the containers running inside the VMs cannot
modify the flows in the Open vSwitch integration bridge.

When multiple containers are created inside a VM, there are multiple CIFs associated with them. The net-
work traffic associated with these CIFs need to reach the Open vSwitch integration bridge running in the
hypervisor for OVN to support virtual network abstractions. OVN should also be able to distinguish net-
work traffic coming from different CIFs. There are two ways to distinguish network traffic of CIFs.

One way is to provide one VIF for every CIF (1:1 model). This means that there could be a lot of network
devices in the hypervisor. This would slow down OVS because of all the additional CPU cycles needed for
the management of all the VIFs. It would also mean that the entity creating the containers in a VM should
also be able to create the corresponding VIFs in the hypervisor.

The second way is to provide a single VIF for all the CIFs (1:many model). OVN could then distinguish
network traffic coming from different CIFs via a tag written in every packet. OVN uses this mechanism and
uses VLAN as the tagging mechanism.

1. A CIF’s life cycle begins when a container is spawned inside a VM by the either the same
CMS that created the VM or a tenant that owns that VM or even a container Orchestration
System that is different than the CMS that initially created the VM. Whoever the entity is,
it will need to know the vif-id that is associated with the network interface of the VM
through which the container interface’s network traffic is expected to go through. The entity
that creates the container interface will also need to choose an unused VLAN inside that
VM.

2. The container spawning entity (either directly or through the CMS that manages the under-
lying infrastructure) updates the OVN Northbound database to include the new CIF, by
adding a row to the Logical_Switch_Port table. In the new row, name is any unique iden-
tifier, parent_name is the vif-id of the VM through which the CIF’s network traffic is
expected to go through and the tag is the VLAN tag that identifies the network traffic of
that CIF.

3. ovn—northd receives the OVN Northbound database update. In turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN South-
bound database’s Logical_Flow table to reflect the new port and also by creating a new row

OVN 21.06.1 OVN Architecture 10

ovn-architecture(7) OVN Manual ovn-architecture(7)

in the Binding table and populating all its columns except the column that identifies the
chassis.

4. On every hypervisor, ovh—controller subscribes to the changes in the Binding table. When
a new row is created by ovn—northd that includes a value in parent_port column of Bind-
ing table, the ovn—controller in the hypervisor whose OVN integration bridge has that
same value in vif-id in external_ids:iface—id updates the local hypervisor’s OpenFlow
tables so that packets to and from the VIF with the particular VLAN tag are properly han-
dled. Afterward it updates the chassis column of the Binding to reflect the physical loca-
tion.

5. One can only start the application inside the container after the underlying network is
ready. To support this, ovn—northd notices the updated chassis column in Binding table
and updates the up column in the OVN Northbound database’s Logical_Switch_Port table
to indicate that the CIF is now up. The entity responsible to start the container application
queries this value and starts the application.

6. Eventually the entity that created and started the container, stops it. The entity, through the
CMS (or directly) deletes its row in the Logical_Switch_Port table.

7. ovn—northd receives the OVN Northbound update and in turn updates the OVN South-
bound database accordingly, by removing or updating the rows from the OVN Southbound
database Logical_Flow table that were related to the now-destroyed CIF. It also deletes the
row in the Binding table for that CIF.

8. On every hypervisor, ovn—controller receives the Logical_Flow table updates that
ovn—northd made in the previous step. ovn—controller updates OpenFlow tables to reflect
the update.

Architectural Physical Life Cycle of a Packet
This section describes how a packet travels from one virtual machine or container to another through OVN.
This description focuses on the physical treatment of a packet; for a description of the logical life cycle of a
packet, please refer to the Logical_Flow table in ovn—sb(5).

This section mentions several data and metadata fields, for clarity summarized here:

OVN 21.06.1

tunnel key
When OVN encapsulates a packet in Geneve or another tunnel, it attaches extra data to it
to allow the receiving OVN instance to process it correctly. This takes different forms
depending on the particular encapsulation, but in each case we refer to it here as the “tun-
nel key.” See Tunnel Encapsulations, below, for details.

logical datapath field
A field that denotes the logical datapath through which a packet is being processed. OVN
uses the field that OpenFlow 1.1+ simply (and confusingly) calls “metadata’ to store the
logical datapath. (This field is passed across tunnels as part of the tunnel key.)

logical input port field
A field that denotes the logical port from which the packet entered the logical datapath.
OVN stores this in Open vSwitch extension register number 14.

Geneve and STT tunnels pass this field as part of the tunnel key. Ramp switch VXLAN
tunnels do not explicitly carry a logical input port, but since they are used to communi-
cate with gateways that from OVN’s perspective consist of only a single logical port, so
that OVN can set the logical input port field to this one on ingress to the OVN logical
pipeline. As for regular VXLAN tunnels, they don’t carry input port field at all. This puts
additional limitations on cluster capabilities that are described in Tunnel Encapsulations
section.

logical output port field
A field that denotes the logical port from which the packet will leave the logical datapath.
This is initialized to O at the beginning of the logical ingress pipeline. OVN stores this in

OVN Architecture 11

ovn-architecture(7)

OVN Manual ovn-architecture(7)

Open vSwitch extension register number 15.

Geneve, STT and regular VXLAN tunnels pass this field as part of the tunnel key. Ramp
switch VXLAN tunnels do not transmit the logical output port field, and since they do not
carry a logical output port field in the tunnel key, when a packet is received from ramp
switch VXLAN tunnel by an OVN hypervisor, the packet is resubmitted to table 8 to
determine the output port(s); when the packet reaches table 32, these packets are resub-
mitted to table 33 for local delivery by checking a MLF_RCV_FROM_RAMP flag,
which is set when the packet arrives from a ramp tunnel.

conntrack zone field for logical ports

A field that denotes the connection tracking zone for logical ports. The value only has
local significance and is not meaningful between chassis. This is initialized to O at the
beginning of the logical ingress pipeline. OVN stores this in Open vSwitch extension reg-
ister number 13.

conntrack zone fields for routers

Fields that denote the connection tracking zones for routers. These values only have local
significance and are not meaningful between chassis. OVN stores the zone information
for north to south traffic (for DNATting or ECMP symmetric replies) in Open vSwitch
extension register number 11 and zone information for south to north traffic (for SNAT-
ing) in Open vSwitch extension register number 12.

logical flow flags

The logical flags are intended to handle keeping context between tables in order to decide
which rules in subsequent tables are matched. These values only have local significance
and are not meaningful between chassis. OVN stores the logical flags in Open vSwitch
extension register number 10.

VLAN ID

The VLAN ID is used as an interface between OVN and containers nested inside a VM
(see Life Cycle of a container interface inside a VM, above, for more in