
ovn-northd(8) OVN Manual ovn-northd(8)

NAME
ovn-northd and ovn-northd-ddlog − Open Virtual Network central control daemon

SYNOPSIS
ovn−northd [options]

DESCRIPTION
ovn−northd is a centralized daemon responsible for translating the high-level OVN configuration into logi-

cal configuration consumable by daemons such as ovn−controller. It translates the logical network config-

uration in terms of conventional network concepts, taken from the OVN Northbound Database (see

ovn−nb(5)), into logical datapath flows in the OVN Southbound Database (see ovn−sb(5)) below it.

ovn−northd is implemented in C. ovn−northd−ddlog is a compatible implementation written in DDlog, a

language for incremental database processing. This documentation applies to both implementations, with

differences indicated where relevant.

OPTIONS
−−ovnnb−db=database

The OVSDB database containing the OVN Northbound Database. If the OVN_NB_DB environ-

ment variable is set, its value is used as the default. Otherwise, the default is

unix:/ovnnb_db.sock.

−−ovnsb−db=database

The OVSDB database containing the OVN Southbound Database. If the OVN_SB_DB environ-

ment variable is set, its value is used as the default. Otherwise, the default is

unix:/ovnsb_db.sock.

−−ddlog−record=file

This option is for ovn−north−ddlog only. It causes the daemon to record the initial database state

and later changes to file in the text-based DDlog command format. The ovn_northd_cli program

can later replay these changes for debugging purposes. This option has a performance impact. See

debugging−ddlog.rst in the OVN documentation for more details.

−−dry−run
Causes ovn−northd to start paused. In the paused state, ovn−northd does not apply any changes

to the databases, although it continues to monitor them. For more information, see the pause com-

mand, under Runtime Management Commands below.

For ovn−northd−ddlog, one could use this option with −−ddlog−record to generate a replay log

without restarting a process or disturbing a running system.

database in the above options must be an OVSDB active or passive connection method, as described in

ovsdb(7).

Daemon Options
−−pidfile[=pidfile]

Causes a file (by default, program.pid) to be created indicating the PID of the running process. If

the pidfile argument is not specified, or if it does not begin with /, then it is created in .

If −−pidfile is not specified, no pidfile is created.

−−overwrite−pidfile
By default, when −−pidfile is specified and the specified pidfile already exists and is locked by a

running process, the daemon refuses to start. Specify −−overwrite−pidfile to cause it to instead

overwrite the pidfile.

When −−pidfile is not specified, this option has no effect.

−−detach
Runs this program as a background process. The process forks, and in the child it starts a new ses-

sion, closes the standard file descriptors (which has the side effect of disabling logging to the con-

sole), and changes its current directory to the root (unless −−no−chdir is specified). After the

child completes its initialization, the parent exits.

OVN 21.06.1 ovn-northd 1

ovn-northd(8) OVN Manual ovn-northd(8)

−−monitor
Creates an additional process to monitor this program. If it dies due to a signal that indicates a pro-

gramming error (SIGABRT, SIGALRM, SIGBUS, SIGFPE, SIGILL, SIGPIPE, SIGSEGV,

SIGXCPU, or SIGXFSZ) then the monitor process starts a new copy of it. If the daemon dies or

exits for another reason, the monitor process exits.

This option is normally used with −−detach, but it also functions without it.

−−no−chdir
By default, when −−detach is specified, the daemon changes its current working directory to the

root directory after it detaches. Otherwise, invoking the daemon from a carelessly chosen directory

would prevent the administrator from unmounting the file system that holds that directory.

Specifying −−no−chdir suppresses this behavior, preventing the daemon from changing its current

working directory. This may be useful for collecting core files, since it is common behavior to

write core dumps into the current working directory and the root directory is not a good directory

to use.

This option has no effect when −−detach is not specified.

−−no−self−confinement
By default this daemon will try to self-confine itself to work with files under well-known directo-

ries determined at build time. It is better to stick with this default behavior and not to use this flag

unless some other Access Control is used to confine daemon. Note that in contrast to other access

control implementations that are typically enforced from kernel-space (e.g. DAC or MAC), self-

confinement is imposed from the user-space daemon itself and hence should not be considered as a

full confinement strategy, but instead should be viewed as an additional layer of security.

−−user=user:group

Causes this program to run as a different user specified in user:group, thus dropping most of the

root privileges. Short forms user and :group are also allowed, with current user or group assumed,

respectively. Only daemons started by the root user accepts this argument.

On Linux, daemons will be granted CAP_IPC_LOCK and CAP_NET_BIND_SERVICES
before dropping root privileges. Daemons that interact with a datapath, such as ovs−vswitchd, will

be granted three additional capabilities, namely CAP_NET_ADMIN, CAP_NET_BROAD-
CAST and CAP_NET_RAW. The capability change will apply even if the new user is root.

On Windows, this option is not currently supported. For security reasons, specifying this option

will cause the daemon process not to start.

Logging Options
−v[spec]

−−verbose=[spec]

Sets logging levels. Without any spec, sets the log level for every module and destination to dbg.

Otherwise, spec is a list of words separated by spaces or commas or colons, up to one from each

category below:

• A valid module name, as displayed by the vlog/list command on ovs−appctl(8), limits

the log level change to the specified module.

• syslog, console, or file, to limit the log level change to only to the system log, to the con-

sole, or to a file, respectively. (If −−detach is specified, the daemon closes its standard

file descriptors, so logging to the console will have no effect.)

On Windows platform, syslog is accepted as a word and is only useful along with the

−−syslog−target option (the word has no effect otherwise).

• off, emer, err, warn, info, or dbg, to control the log level. Messages of the given sev erity

or higher will be logged, and messages of lower severity will be filtered out. off filters out

all messages. See ovs−appctl(8) for a definition of each log level.

OVN 21.06.1 ovn-northd 2

ovn-northd(8) OVN Manual ovn-northd(8)

Case is not significant within spec.

Regardless of the log levels set for file, logging to a file will not take place unless −−log−file is

also specified (see below).

For compatibility with older versions of OVS, any is accepted as a word but has no effect.

−v
−−verbose

Sets the maximum logging verbosity level, equivalent to −−verbose=dbg.

−vPATTERN:destination:pattern

−−verbose=PATTERN:destination:pattern

Sets the log pattern for destination to pattern. Refer to ovs−appctl(8) for a description of the valid

syntax for pattern.

−vFACILITY:facility

−−verbose=FACILITY:facility

Sets the RFC5424 facility of the log message. facility can be one of kern, user, mail, daemon,

auth, syslog, lpr, news, uucp, clock, ftp, ntp, audit, alert, clock2, local0, local1, local2, local3,

local4, local5, local6 or local7. If this option is not specified, daemon is used as the default for the

local system syslog and local0 is used while sending a message to the target provided via the

−−syslog−target option.

−−log−file[=file]

Enables logging to a file. If file is specified, then it is used as the exact name for the log file. The

default log file name used if file is omitted is /usr/local/var/log/ovn/program.log.

−−syslog−target=host:port

Send syslog messages to UDP port on host, in addition to the system syslog. The host must be a

numerical IP address, not a hostname.

−−syslog−method=method

Specify method as how syslog messages should be sent to syslog daemon. The following forms are

supported:

• libc, to use the libc syslog() function. Downside of using this options is that libc adds

fixed prefix to every message before it is actually sent to the syslog daemon over /dev/log
UNIX domain socket.

• unix:file, to use a UNIX domain socket directly. It is possible to specify arbitrary mes-

sage format with this option. However, rsyslogd 8.9 and older versions use hard coded

parser function anyway that limits UNIX domain socket use. If you want to use arbitrary

message format with older rsyslogd versions, then use UDP socket to localhost IP

address instead.

• udp:ip:port, to use a UDP socket. With this method it is possible to use arbitrary message

format also with older rsyslogd. When sending syslog messages over UDP socket extra

precaution needs to be taken into account, for example, syslog daemon needs to be con-

figured to listen on the specified UDP port, accidental iptables rules could be interfering

with local syslog traffic and there are some security considerations that apply to UDP

sockets, but do not apply to UNIX domain sockets.

• null, to discard all messages logged to syslog.

The default is taken from the OVS_SYSLOG_METHOD environment variable; if it is unset, the

default is libc.

PKI Options
PKI configuration is required in order to use SSL for the connections to the Northbound and Southbound

databases.

OVN 21.06.1 ovn-northd 3

ovn-northd(8) OVN Manual ovn-northd(8)

−p privkey.pem

−−private−key=privkey.pem

Specifies a PEM file containing the private key used as identity for outgoing SSL connec-

tions.

−c cert.pem

−−certificate=cert.pem

Specifies a PEM file containing a certificate that certifies the private key specified on −p
or −−private−key to be trustworthy. The certificate must be signed by the certificate

authority (CA) that the peer in SSL connections will use to verify it.

−C cacert.pem

−−ca−cert=cacert.pem

Specifies a PEM file containing the CA certificate for verifying certificates presented to

this program by SSL peers. (This may be the same certificate that SSL peers use to verify

the certificate specified on −c or −−certificate, or it may be a different one, depending on

the PKI design in use.)

−C none
−−ca−cert=none

Disables verification of certificates presented by SSL peers. This introduces a security

risk, because it means that certificates cannot be verified to be those of known trusted

hosts.

Other Options
−−unixctl=socket

Sets the name of the control socket on which program listens for runtime management commands

(see RUNTIME MANAGEMENT COMMANDS, below). If socket does not begin with /, it is inter-

preted as relative to . If −−unixctl is not used at all, the default socket is /program.pid.ctl, where

pid is program’s process ID.

On Windows a local named pipe is used to listen for runtime management commands. A file is

created in the absolute path as pointed by socket or if −−unixctl is not used at all, a file is created

as program in the configured OVS_RUNDIR directory. The file exists just to mimic the behavior of

a Unix domain socket.

Specifying none for socket disables the control socket feature.

−h
−−help Prints a brief help message to the console.

−V
−−version

Prints version information to the console.

RUNTIME MANAGEMENT COMMANDS
ovs−appctl can send commands to a running ovn−northd process. The currently supported commands are

described below.

exit Causes ovn−northd to gracefully terminate.

pause Pauses ovn−northd. When it is paused, ovn−northd receives changes from the North-

bound and Southbound database changes as usual, but it does not send any updates. A

paused ovn−northd also drops database locks, which allows any other non-paused

instance of ovn−northd to take over.

resume Resumes the ovn-northd operation to process Northbound and Southbound database con-

tents and generate logical flows. This will also instruct ovn-northd to aspire for the lock

on SB DB.

OVN 21.06.1 ovn-northd 4

ovn-northd(8) OVN Manual ovn-northd(8)

is−paused
Returns "true" if ovn-northd is currently paused, "false" otherwise.

status Prints this server’s status. Status will be "active" if ovn-northd has acquired OVSDB lock

on SB DB, "standby" if it has not or "paused" if this instance is paused.

sb−cluster−state−reset
Reset southbound database cluster status when databases are destroyed and rebuilt.

If all databases in a clustered southbound database are removed from disk, then the stored

index of all databases will be reset to zero. This will cause ovn-northd to be unable to

read or write to the southbound database, because it will always detect the data as stale.

In such a case, run this command so that ovn-northd will reset its local index so that it can

interact with the southbound database again.

nb−cluster−state−reset
Reset northbound database cluster status when databases are destroyed and rebuilt.

This performs the same task as sb−cluster−state−reset except for the northbound data-

base client.

Only ovn−northd−ddlog supports the following commands:

enable−cpu−profiling
disable−cpu−profiling

Enables or disables profiling of CPU time used by the DDlog engine. When CPU profil-

ing is enabled, the profile command (see below) will include DDlog CPU usage statistics

in its output. Enabling CPU profiling will slow ovn−northd−ddlog. Disabling CPU pro-

filing does not clear any previously recorded statistics.

profile Outputs a profile of the current and peak sizes of arrangements inside DDlog. This profil-

ing data can be useful for optimizing DDlog code. If CPU profiling was previously

enabled (even if it was later disabled), the output also includes a CPU time profile. See

Profiling inside the tutorial in the DDlog repository for an introduction to profiling

DDlog.

ACTIVE-STANDBY FOR HIGH AVAILABILITY
You may run ovn−northd more than once in an OVN deployment. When connected to a standalone or clus-

tered DB setup, OVN will automatically ensure that only one of them is active at a time. If multiple

instances of ovn−northd are running and the active ovn−northd fails, one of the hot standby instances of

ovn−northd will automatically take over.

Active−Standby with multiple OVN DB servers
You may run multiple OVN DB servers in an OVN deployment with:

• OVN DB servers deployed in active/passive mode with one active and multiple passive

ovsdb-servers.

• ovn−northd also deployed on all these nodes, using unix ctl sockets to connect to the

local OVN DB servers.

In such deployments, the ovn-northds on the passive nodes will process the DB changes and compute logi-

cal flows to be thrown out later, because write transactions are not allowed by the passive ovsdb-servers. It

results in unnecessary CPU usage.

With the help of runtime management command pause, you can pause ovn−northd on these nodes. When

a passive node becomes master, you can use the runtime management command resume to resume the

ovn−northd to process the DB changes.

LOGICAL FLOW TABLE STRUCTURE
One of the main purposes of ovn−northd is to populate the Logical_Flow table in the OVN_Southbound
database. This section describes how ovn−northd does this for switch and router logical datapaths.

OVN 21.06.1 ovn-northd 5

ovn-northd(8) OVN Manual ovn-northd(8)

Logical Switch Datapaths
Ingress Table 0: Admission Control and Ingress Port Security - L2

Ingress table 0 contains these logical flows:

• Priority 100 flows to drop packets with VLAN tags or multicast Ethernet source

addresses.

• Priority 50 flows that implement ingress port security for each enabled logical port. For

logical ports on which port security is enabled, these match the inport and the valid

eth.src address(es) and advance only those packets to the next flow table. For logical

ports on which port security is not enabled, these advance all packets that match the

inport.

There are no flows for disabled logical ports because the default-drop behavior of logical flow tables causes

packets that ingress from them to be dropped.

Ingress Table 1: Ingress Port Security - IP

Ingress table 1 contains these logical flows:

• For each element in the port security set having one or more IPv4 or IPv6 addresses (or

both),

• Priority 90 flow to allow IPv4 traffic if it has IPv4 addresses which match the

inport, valid eth.src and valid ip4.src address(es).

• Priority 90 flow to allow IPv4 DHCP discovery traffic if it has a valid eth.src.

This is necessary since DHCP discovery messages are sent from the unspecified

IPv4 address (0.0.0.0) since the IPv4 address has not yet been assigned.

• Priority 90 flow to allow IPv6 traffic if it has IPv6 addresses which match the

inport, valid eth.src and valid ip6.src address(es).

• Priority 90 flow to allow IPv6 DAD (Duplicate Address Detection) traffic if it

has a valid eth.src. This is is necessary since DAD include requires joining an

multicast group and sending neighbor solicitations for the newly assigned

address. Since no address is yet assigned, these are sent from the unspecified

IPv6 address (::).

• Priority 80 flow to drop IP (both IPv4 and IPv6) traffic which match the inport
and valid eth.src.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 2: Ingress Port Security - Neighbor discovery

Ingress table 2 contains these logical flows:

• For each element in the port security set,

• Priority 90 flow to allow ARP traffic which match the inport and valid eth.src
and arp.sha. If the element has one or more IPv4 addresses, then it also matches

the valid arp.spa.

• Priority 90 flow to allow IPv6 Neighbor Solicitation and Advertisement traffic

which match the inport, valid eth.src and nd.sll/nd.tll. If the element has one or

more IPv6 addresses, then it also matches the valid nd.target address(es) for

Neighbor Advertisement traffic.

• Priority 80 flow to drop ARP and IPv6 Neighbor Solicitation and Advertisement

traffic which match the inport and valid eth.src.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 3: Lookup MAC address learning table

This table looks up the MAC learning table of the logical switch datapath to check if the port−mac pair is

OVN 21.06.1 ovn-northd 6

ovn-northd(8) OVN Manual ovn-northd(8)

present or not. MAC is learnt only for logical switch VIF ports whose port security is disabled and

’unknown’ address set.

• For each such logical port p whose port security is disabled and ’unknown’ address set

following flow is added.

• Priority 100 flow with the match inport == p and action reg0[11] =
lookup_fdb(inport, eth.src); next;

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 4: Learn MAC of ’unknown’ ports.

This table learns the MAC addresses seen on the logical ports whose port security is disabled and

’unknown’ address set if the lookup_fdb action returned false in the previous table.

• For each such logical port p whose port security is disabled and ’unknown’ address set

following flow is added.

• Priority 100 flow with the match inport == p && reg0[11] == 0 and action

put_fdb(inport, eth.src); next; which stores the port−mac in the mac learning

table of the logical switch datapath and advances the packet to the next table.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 5: from−lport Pre-ACLs

This table prepares flows for possible stateful ACL processing in ingress table ACLs. It contains a prior-

ity−0 flow that simply moves traffic to the next table. If stateful ACLs are used in the logical datapath, a

priority−100 flow is added that sets a hint (with reg0[0] = 1; next;) for table Pre−stateful to send IP pack-

ets to the connection tracker before eventually advancing to ingress table ACLs. If special ports such as

route ports or localnet ports can’t use ct(), a priority−110 flow is added to skip over stateful ACLs. IPv6

Neighbor Discovery and MLD traffic also skips stateful ACLs. For "allow-stateless" ACLs, a flow is added

to bypass setting the hint for connection tracker processing.

This table also has a priority−110 flow with the match eth.dst == E for all logical switch datapaths to move

traffic to the next table. Where E is the service monitor mac defined in the options:svc_monitor_mac
colum of NB_Global table.

Ingress Table 6: Pre-LB

This table prepares flows for possible stateful load balancing processing in ingress table LB and Stateful. It

contains a priority−0 flow that simply moves traffic to the next table. Moreover it contains a priority−110

flow to move IPv6 Neighbor Discovery and MLD traffic to the next table. If load balancing rules with vir-

tual IP addresses (and ports) are configured in OVN_Northbound database for a logical switch datapath, a

priority−100 flow is added with the match ip to match on IP packets and sets the action reg0[2] = 1; next;
to act as a hint for table Pre−stateful to send IP packets to the connection tracker for packet de-fragmenta-

tion (and to possibly do DNAT for already established load balanced traffic) before eventually advancing to

ingress table Stateful. If controller_event has been enabled and load balancing rules with empty backends

have been added in OVN_Northbound, a 130 flow is added to trigger ovn-controller events whenever the

chassis receives a packet for that particular VIP. If ev ent−elb meter has been previously created, it will be

associated to the empty_lb logical flow

Prior to OVN 20.09 we were setting the reg0[0] = 1 only if the IP destination matches the load balancer

VIP. Howev er this had few issues cases where a logical switch doesn’t hav e any ACLs with allow−related
action. To understand the issue lets a take a TCP load balancer - 10.0.0.10:80=10.0.0.3:80. If a logical port

- p1 with IP - 10.0.0.5 opens a TCP connection with the VIP - 10.0.0.10, then the packet in the ingress

pipeline of ’p1’ is sent to the p1’s conntrack zone id and the packet is load balanced to the backend -

10.0.0.3. For the reply packet from the backend lport, it is not sent to the conntrack of backend lport’s zone

id. This is fine as long as the packet is valid. Suppose the backend lport sends an invalid TCP packet (like

incorrect sequence number), the packet gets delivered to the lport ’p1’ without unDNAT ing the packet to

the VIP - 10.0.0.10. And this causes the connection to be reset by the lport p1’s VIF.

OVN 21.06.1 ovn-northd 7

ovn-northd(8) OVN Manual ovn-northd(8)

We can’t fix this issue by adding a logical flow to drop ct.inv packets in the egress pipeline since it will drop

all other connections not destined to the load balancers. To fix this issue, we send all the packets to the con-

ntrack in the ingress pipeline if a load balancer is configured. We can now add a lflow to drop ct.inv pack-

ets.

This table also has a priority−110 flow with the match eth.dst == E for all logical switch datapaths to move

traffic to the next table. Where E is the service monitor mac defined in the options:svc_monitor_mac
colum of NB_Global table.

This table also has a priority−110 flow with the match inport == I for all logical switch datapaths to move

traffic to the next table. Where I is the peer of a logical router port. This flow is added to skip the connec-

tion tracking of packets which enter from logical router datapath to logical switch datapath.

Ingress Table 7: Pre-stateful

This table prepares flows for all possible stateful processing in next tables. It contains a priority−0 flow that

simply moves traffic to the next table.

• Priority−120 flows that send the packets to connection tracker using ct_lb; as the action

so that the already established traffic destined to the load balancer VIP gets DNATted

based on a hint provided by the previous tables (with a match for reg0[2] == 1 and on

supported load balancer protocols and address families). For IPv4 traffic the flows also

load the original destination IP and transport port in registers reg1 and reg2. For IPv6

traffic the flows also load the original destination IP and transport port in registers xxreg1
and reg2.

• A priority−110 flow sends the packets to connection tracker based on a hint provided by

the previous tables (with a match for reg0[2] == 1) by using the ct_lb; action. This flow

is added to handle the traffic for load balancer VIPs whose protocol is not defined (mainly

for ICMP traffic).

• A priority−100 flow sends the packets to connection tracker based on a hint provided by

the previous tables (with a match for reg0[0] == 1) by using the ct_next; action.

Ingress Table 8: from−lport ACL hints

This table consists of logical flows that set hints (reg0 bits) to be used in the next stage, in the ACL pro-

cessing table, if stateful ACLs or load balancers are configured. Multiple hints can be set for the same

packet. The possible hints are:

• reg0[7]: the packet might match an allow−related ACL and might have to commit the

connection to conntrack.

• reg0[8]: the packet might match an allow−related ACL but there will be no need to com-

mit the connection to conntrack because it already exists.

• reg0[9]: the packet might match a drop/reject.

• reg0[10]: the packet might match a drop/reject ACL but the connection was previously

allowed so it might have to be committed again with ct_label=1/1.

The table contains the following flows:

• A priority−65535 flow to advance to the next table if the logical switch has no ACLs con-

figured, otherwise a priority−0 flow to advance to the next table.

• A priority−7 flow that matches on packets that initiate a new session. This flow sets

reg0[7] and reg0[9] and then advances to the next table.

• A priority−6 flow that matches on packets that are in the request direction of an already

existing session that has been marked as blocked. This flow sets reg0[7] and reg0[9] and

then advances to the next table.

• A priority−5 flow that matches untracked packets. This flow sets reg0[8] and reg0[9] and

then advances to the next table.

OVN 21.06.1 ovn-northd 8

ovn-northd(8) OVN Manual ovn-northd(8)

• A priority−4 flow that matches on packets that are in the request direction of an already

existing session that has not been marked as blocked. This flow sets reg0[8] and reg0[10]
and then advances to the next table.

• A priority−3 flow that matches on packets that are in not part of established sessions. This

flow sets reg0[9] and then advances to the next table.

• A priority−2 flow that matches on packets that are part of an established session that has

been marked as blocked. This flow sets reg0[9] and then advances to the next table.

• A priority−1 flow that matches on packets that are part of an established session that has

not been marked as blocked. This flow sets reg0[10] and then advances to the next table.

Ingress table 9: from−lport ACLs

Logical flows in this table closely reproduce those in the ACL table in the OVN_Northbound database for

the from−lport direction. The priority values from the ACL table have a limited range and have 1000

added to them to leave room for OVN default flows at both higher and lower priorities.

• allow ACLs translate into logical flows with the next; action. If there are any stateful

ACLs on this datapath, then allow ACLs translate to ct_commit; next; (which acts as a

hint for the next tables to commit the connection to conntrack),

• allow−related ACLs translate into logical flows with the ct_commit(ct_label=0/1);
next; actions for new connections and reg0[1] = 1; next; for existing connections.

• allow−stateless ACLs translate into logical flows with the next; action.

• reject ACLs translate into logical flows with the tcp_reset { output <−> inport;
next(pipeline=egress,table=5);} action for TCP connections,icmp4/icmp6 action for

UDP connections, and sctp_abort {output <−%gt; inport; next(pipeline=egress,ta-
ble=5);} action for SCTP associations.

• Other ACLs translate to drop; for new or untracked connections and ct_com-
mit(ct_label=1/1); for known connections. Setting ct_label marks a connection as one

that was previously allowed, but should no longer be allowed due to a policy change.

This table contains a priority−65535 flow to advance to the next table if the logical switch has no ACLs

configured, otherwise a priority−0 flow to advance to the next table so that ACLs allow packets by default.

If the logical datapath has a stateful ACL or a load balancer with VIP configured, the following flows will

also be added:

• A priority−1 flow that sets the hint to commit IP traffic to the connection tracker (with

action reg0[1] = 1; next;). This is needed for the default allow policy because, while the

initiator’s direction may not have any stateful rules, the server’s may and then its return

traffic would not be known and marked as invalid.

• A priority−65532 flow that allows any traffic in the reply direction for a connection that

has been committed to the connection tracker (i.e., established flows), as long as the com-

mitted flow does not have ct_label.blocked set. We only handle traffic in the reply direc-

tion here because we want all packets going in the request direction to still go through the

flows that implement the currently defined policy based on ACLs. If a connection is no

longer allowed by policy, ct_label.blocked will get set and packets in the reply direction

will no longer be allowed, either.

• A priority−65532 flow that allows any traffic that is considered related to a committed

flow in the connection tracker (e.g., an ICMP Port Unreachable from a non-listening UDP

port), as long as the committed flow does not have ct_label.blocked set.

• A priority−65532 flow that drops all traffic marked by the connection tracker as invalid.

• A priority−65532 flow that drops all traffic in the reply direction with ct_label.blocked
set meaning that the connection should no longer be allowed due to a policy change.

Packets in the request direction are skipped here to let a newly created ACL re-allow this

OVN 21.06.1 ovn-northd 9

ovn-northd(8) OVN Manual ovn-northd(8)

connection.

• A priority−65532 flow that allows IPv6 Neighbor solicitation, Neighbor discover, Router

solicitation, Router advertisement and MLD packets.

If the logical datapath has any ACL or a load balancer with VIP configured, the following flow will also be

added:

• A priority 34000 logical flow is added for each logical switch datapath with the match

eth.dst = E to allow the service monitor reply packet destined to ovn−controller with the

action next, where E is the service monitor mac defined in the options:svc_moni-
tor_mac colum of NB_Global table.

Ingress Table 10: from−lport QoS Marking

Logical flows in this table closely reproduce those in the QoS table with the action column set in the

OVN_Northbound database for the from−lport direction.

• For every qos_rules entry in a logical switch with DSCP marking enabled, a flow will be

added at the priority mentioned in the QoS table.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 11: from−lport QoS Meter

Logical flows in this table closely reproduce those in the QoS table with the bandwidth column set in the

OVN_Northbound database for the from−lport direction.

• For every qos_rules entry in a logical switch with metering enabled, a flow will be added

at the priority mentioned in the QoS table.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 12: Stateful

• For all the configured load balancing rules for a switch in OVN_Northbound database

that includes a L4 port PORT of protocol P and IP address VIP, a priority−120 flow is

added. For IPv4 VIPs , the flow matches ct.new && ip && ip4.dst == VIP && P &&
P.dst == PORT. For IPv6 VIPs, the flow matches ct.new && ip && ip6.dst == VIP &&
P && P.dst == PORT. The flow’s action is ct_lb(args) , where args contains comma

separated IP addresses (and optional port numbers) to load balance to. The address family

of the IP addresses of args is the same as the address family of VIP. If health check is

enabled, then args will only contain those endpoints whose service monitor status entry

in OVN_Southbound db is either online or empty. For IPv4 traffic the flow also loads

the original destination IP and transport port in registers reg1 and reg2. For IPv6 traffic

the flow also loads the original destination IP and transport port in registers xxreg1 and

reg2.

• For all the configured load balancing rules for a switch in OVN_Northbound database

that includes just an IP address VIP to match on, OVN adds a priority−110 flow. For IPv4

VIPs, the flow matches ct.new && ip && ip4.dst == VIP. For IPv6 VIPs, the flow

matches ct.new && ip && ip6.dst == VIP. The action on this flow is ct_lb(args), where

args contains comma separated IP addresses of the same address family as VIP. For IPv4

traffic the flow also loads the original destination IP and transport port in registers reg1
and reg2. For IPv6 traffic the flow also loads the original destination IP and transport port

in registers xxreg1 and reg2.

• If the load balancer is created with −−reject option and it has no active backends, a TCP

reset segment (for tcp) or an ICMP port unreachable packet (for all other kind of traffic)

will be sent whenever an incoming packet is received for this load-balancer. Please note

using −−reject option will disable empty_lb SB controller event for this load balancer.

• A priority−100 flow commits packets to connection tracker using ct_commit; next;
action based on a hint provided by the previous tables (with a match for reg0[1] == 1).

OVN 21.06.1 ovn-northd 10

ovn-northd(8) OVN Manual ovn-northd(8)

• A priority−0 flow that simply moves traffic to the next table.

Ingress Table 13: Pre-Hairpin

• If the logical switch has load balancer(s) configured, then a priority−100 flow is added

with the match ip && ct.trk to check if the packet needs to be hairpinned (if after load

balancing the destination IP matches the source IP) or not by executing the actions

reg0[6] = chk_lb_hairpin(); and reg0[12] = chk_lb_hairpin_reply(); and advances the

packet to the next table.

• A priority−0 flow that simply moves traffic to the next table.

Ingress Table 14: Nat-Hairpin

• If the logical switch has load balancer(s) configured, then a priority−100 flow is added

with the match ip && ct.new && ct.trk && reg0[6] == 1 which hairpins the traffic by

NATting source IP to the load balancer VIP by executing the action ct_snat_to_vip and

advances the packet to the next table.

• If the logical switch has load balancer(s) configured, then a priority−100 flow is added

with the match ip && ct.est && ct.trk && reg0[6] == 1 which hairpins the traffic by

NATting source IP to the load balancer VIP by executing the action ct_snat and advances

the packet to the next table.

• If the logical switch has load balancer(s) configured, then a priority−90 flow is added

with the match ip && reg0[12] == 1 which matches on the replies of hairpinned traffic

(i.e., destination IP is VIP, source IP is the backend IP and source L4 port is backend port

for L4 load balancers) and executes ct_snat and advances the packet to the next table.

• A priority−0 flow that simply moves traffic to the next table.

Ingress Table 15: Hairpin

• A priority−1 flow that hairpins traffic matched by non-default flows in the Pre-Hairpin ta-

ble. Hairpinning is done at L2, Ethernet addresses are swapped and the packets are

looped back on the input port.

• A priority−0 flow that simply moves traffic to the next table.

Ingress Table 16: ARP/ND responder

This table implements ARP/ND responder in a logical switch for known IPs. The advantage of the ARP

responder flow is to limit ARP broadcasts by locally responding to ARP requests without the need to send

to other hypervisors. One common case is when the inport is a logical port associated with a VIF and the

broadcast is responded to on the local hypervisor rather than broadcast across the whole network and

responded to by the destination VM. This behavior is proxy ARP.

ARP requests arrive from VMs from a logical switch inport of type default. For this case, the logical switch

proxy ARP rules can be for other VMs or logical router ports. Logical switch proxy ARP rules may be pro-

grammed both for mac binding of IP addresses on other logical switch VIF ports (which are of the default

logical switch port type, representing connectivity to VMs or containers), and for mac binding of IP

addresses on logical switch router type ports, representing their logical router port peers. In order to support

proxy ARP for logical router ports, an IP address must be configured on the logical switch router type port,

with the same value as the peer logical router port. The configured MAC addresses must match as well.

When a VM sends an ARP request for a distributed logical router port and if the peer router type port of the

attached logical switch does not have an IP address configured, the ARP request will be broadcast on the

logical switch. One of the copies of the ARP request will go through the logical switch router type port to

the logical router datapath, where the logical router ARP responder will generate a reply. The MAC binding

of a distributed logical router, once learned by an associated VM, is used for all that VM’s communication

needing routing. Hence, the action of a VM re-arping for the mac binding of the logical router port should

be rare.

Logical switch ARP responder proxy ARP rules can also be hit when receiving ARP requests externally on

OVN 21.06.1 ovn-northd 11

ovn-northd(8) OVN Manual ovn-northd(8)

a L2 gateway port. In this case, the hypervisor acting as an L2 gateway, responds to the ARP request on

behalf of a destination VM.

Note that ARP requests received from localnet or vtep logical inports can either go directly to VMs, in

which case the VM responds or can hit an ARP responder for a logical router port if the packet is used to

resolve a logical router port next hop address. In either case, logical switch ARP responder rules will not be

hit. It contains these logical flows:

• Priority−100 flows to skip the ARP responder if inport is of type localnet or vtep and

advances directly to the next table. ARP requests sent to localnet or vtep ports can be

received by multiple hypervisors. Now, because the same mac binding rules are down-

loaded to all hypervisors, each of the multiple hypervisors will respond. This will confuse

L2 learning on the source of the ARP requests. ARP requests received on an inport of

type router are not expected to hit any logical switch ARP responder flows. However, no

skip flows are installed for these packets, as there would be some additional flow cost for

this and the value appears limited.

• If inport V is of type virtual adds a priority−100 logical flow for each P configured in the

options:virtual-parents column with the match

inport == P && && ((arp.op == 1 && arp.spa == VIP && arp.tpa == VIP) || (arp.op == 2 && arp.spa ==

and applies the action

bind_vport(V, inport);

and advances the packet to the next table.

Where VIP is the virtual ip configured in the column options:virtual-ip.

• Priority−50 flows that match ARP requests to each known IP address A of every logical

switch port, and respond with ARP replies directly with corresponding Ethernet address

E:

eth.dst = eth.src;
eth.src = E;

arp.op = 2; /* ARP reply. */
arp.tha = arp.sha;
arp.sha = E;

arp.tpa = arp.spa;
arp.spa = A;

outport = inport;
flags.loopback = 1;
output;

These flows are omitted for logical ports (other than router ports or localport ports) that

are down (unless ignore_lsp_down is configured as true in options column of

NB_Global table of the Northbound database), for logical ports of type virtual, for logi-

cal ports with ’unknown’ address set and for logical ports of a logical switch configured

with other_config:vlan−passthru=true.

• Priority−50 flows that match IPv6 ND neighbor solicitations to each known IP address A

(and A’s solicited node address) of every logical switch port except of type router, and

respond with neighbor advertisements directly with corresponding Ethernet address E:

nd_na {
eth.src = E;

ip6.src = A;

nd.target = A;

OVN 21.06.1 ovn-northd 12

ovn-northd(8) OVN Manual ovn-northd(8)

nd.tll = E;

outport = inport;
flags.loopback = 1;
output;

};

Priority−50 flows that match IPv6 ND neighbor solicitations to each known IP address A

(and A’s solicited node address) of logical switch port of type router, and respond with

neighbor advertisements directly with corresponding Ethernet address E:

nd_na_router {
eth.src = E;

ip6.src = A;

nd.target = A;

nd.tll = E;

outport = inport;
flags.loopback = 1;
output;

};

These flows are omitted for logical ports (other than router ports or localport ports) that

are down (unless ignore_lsp_down is configured as true in options column of

NB_Global table of the Northbound database), for logical ports of type virtual and for

logical ports with ’unknown’ address set.

• Priority−100 flows with match criteria like the ARP and ND flows above, except that they

only match packets from the inport that owns the IP addresses in question, with action

next;. These flows prevent OVN from replying to, for example, an ARP request emitted

by a VM for its own IP address. A VM only makes this kind of request to attempt to

detect a duplicate IP address assignment, so sending a reply will prevent the VM from

accepting the IP address that it owns.

In place of next;, it would be reasonable to use drop; for the flows’ actions. If everything

is working as it is configured, then this would produce equivalent results, since no host

should reply to the request. But ARPing for one’s own IP address is intended to detect sit-

uations where the network is not working as configured, so dropping the request would

frustrate that intent.

• For each SVC_MON_SRC_IP defined in the value of the ip_port_mappings:END-
POINT_IP column of Load_Balancer table, priority−110 logical flow is added with the

match arp.tpa == SVC_MON_SRC_IP && && arp.op == 1 and applies the action

eth.dst = eth.src;
eth.src = E;

arp.op = 2; /* ARP reply. */
arp.tha = arp.sha;
arp.sha = E;

arp.tpa = arp.spa;
arp.spa = A;

outport = inport;
flags.loopback = 1;
output;

where E is the service monitor source mac defined in the options:svc_monitor_mac col-

umn in the NB_Global table. This mac is used as the source mac in the service monitor

packets for the load balancer endpoint IP health checks.

OVN 21.06.1 ovn-northd 13

ovn-northd(8) OVN Manual ovn-northd(8)

SVC_MON_SRC_IP is used as the source ip in the service monitor IPv4 packets for the

load balancer endpoint IP health checks.

These flows are required if an ARP request is sent for the IP SVC_MON_SRC_IP.

• For each VIP configured in the table Forwarding_Group a priority−50 logical flow is

added with the match arp.tpa == vip && && arp.op == 1
and applies the action

eth.dst = eth.src;
eth.src = E;

arp.op = 2; /* ARP reply. */
arp.tha = arp.sha;
arp.sha = E;

arp.tpa = arp.spa;
arp.spa = A;

outport = inport;
flags.loopback = 1;
output;

where E is the forwarding group’s mac defined in the vmac.

A is used as either the destination ip for load balancing traffic to child ports or as nexthop

to hosts behind the child ports.

These flows are required to respond to an ARP request if an ARP request is sent for the

IP vip.

• One priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 17: DHCP option processing

This table adds the DHCPv4 options to a DHCPv4 packet from the logical ports configured with IPv4

address(es) and DHCPv4 options, and similarly for DHCPv6 options. This table also adds flows for the log-

ical ports of type external.

• A priority−100 logical flow is added for these logical ports which matches the IPv4

packet with udp.src = 68 and udp.dst = 67 and applies the action put_dhcp_opts and

advances the packet to the next table.

reg0[3] = put_dhcp_opts(offer_ip = ip, options...);

next;

For DHCPDISCOVER and DHCPREQUEST, this transforms the packet into a DHCP

reply, adds the DHCP offer IP ip and options to the packet, and stores 1 into reg0[3]. For

other kinds of packets, it just stores 0 into reg0[3]. Either way, it continues to the next ta-

ble.

• A priority−100 logical flow is added for these logical ports which matches the IPv6

packet with udp.src = 546 and udp.dst = 547 and applies the action put_dhcpv6_opts
and advances the packet to the next table.

reg0[3] = put_dhcpv6_opts(ia_addr = ip, options...);

next;

For DHCPv6 Solicit/Request/Confirm packets, this transforms the packet into a DHCPv6

Advertise/Reply, adds the DHCPv6 offer IP ip and options to the packet, and stores 1 into

reg0[3]. For other kinds of packets, it just stores 0 into reg0[3]. Either way, it continues to

the next table.

OVN 21.06.1 ovn-northd 14

ovn-northd(8) OVN Manual ovn-northd(8)

• A priority−0 flow that matches all packets to advances to table 16.

Ingress Table 18: DHCP responses

This table implements DHCP responder for the DHCP replies generated by the previous table.

• A priority 100 logical flow is added for the logical ports configured with DHCPv4

options which matches IPv4 packets with udp.src == 68 && udp.dst == 67 && reg0[3]
== 1 and responds back to the inport after applying these actions. If reg0[3] is set to 1, it

means that the action put_dhcp_opts was successful.

eth.dst = eth.src;
eth.src = E;

ip4.src = S;

udp.src = 67;
udp.dst = 68;
outport = P;

flags.loopback = 1;
output;

where E is the server MAC address and S is the server IPv4 address defined in the

DHCPv4 options. Note that ip4.dst field is handled by put_dhcp_opts.

(This terminates ingress packet processing; the packet does not go to the next ingress ta-

ble.)

• A priority 100 logical flow is added for the logical ports configured with DHCPv6

options which matches IPv6 packets with udp.src == 546 && udp.dst == 547 &&
reg0[3] == 1 and responds back to the inport after applying these actions. If reg0[3] is

set to 1, it means that the action put_dhcpv6_opts was successful.

eth.dst = eth.src;
eth.src = E;

ip6.dst = A;

ip6.src = S;

udp.src = 547;
udp.dst = 546;
outport = P;

flags.loopback = 1;
output;

where E is the server MAC address and S is the server IPv6 LLA address generated from

the server_id defined in the DHCPv6 options and A is the IPv6 address defined in the

logical port’s addresses column.

(This terminates packet processing; the packet does not go on the next ingress table.)

• A priority−0 flow that matches all packets to advances to table 17.

Ingress Table 19 DNS Lookup

This table looks up and resolves the DNS names to the corresponding configured IP address(es).

• A priority−100 logical flow for each logical switch datapath if it is configured with DNS

records, which matches the IPv4 and IPv6 packets with udp.dst = 53 and applies the

action dns_lookup and advances the packet to the next table.

reg0[4] = dns_lookup(); next;

For valid DNS packets, this transforms the packet into a DNS reply if the DNS name can

be resolved, and stores 1 into reg0[4]. For failed DNS resolution or other kinds of

OVN 21.06.1 ovn-northd 15

ovn-northd(8) OVN Manual ovn-northd(8)

packets, it just stores 0 into reg0[4]. Either way, it continues to the next table.

Ingress Table 20 DNS Responses

This table implements DNS responder for the DNS replies generated by the previous table.

• A priority−100 logical flow for each logical switch datapath if it is configured with DNS

records, which matches the IPv4 and IPv6 packets with udp.dst = 53 && reg0[4] == 1
and responds back to the inport after applying these actions. If reg0[4] is set to 1, it

means that the action dns_lookup was successful.

eth.dst <−> eth.src;
ip4.src <−> ip4.dst;
udp.dst = udp.src;
udp.src = 53;
outport = P;

flags.loopback = 1;
output;

(This terminates ingress packet processing; the packet does not go to the next ingress ta-

ble.)

Ingress table 21 External ports

Traffic from the external logical ports enter the ingress datapath pipeline via the localnet port. This table

adds the below logical flows to handle the traffic from these ports.

• A priority−100 flow is added for each external logical port which doesn’t reside on a

chassis to drop the ARP/IPv6 NS request to the router IP(s) (of the logical switch) which

matches on the inport of the external logical port and the valid eth.src address(es) of the

external logical port.

This flow guarantees that the ARP/NS request to the router IP address from the external

ports is responded by only the chassis which has claimed these external ports. All the

other chassis, drops these packets.

A priority−100 flow is added for each external logical port which doesn’t reside on a

chassis to drop any packet destined to the router mac - with the match inport == external

&& eth.src == E && eth.dst == R && !is_chassis_resident("external") where E is the

external port mac and R is the router port mac.

• A priority−0 flow that matches all packets to advances to table 20.

Ingress Table 22 Destination Lookup

This table implements switching behavior. It contains these logical flows:

• A priority−110 flow with the match eth.src == E for all logical switch datapaths and

applies the action handle_svc_check(inport). Where E is the service monitor mac

defined in the options:svc_monitor_mac colum of NB_Global table.

• A priority−100 flow that punts all IGMP/MLD packets to ovn−controller if multicast

snooping is enabled on the logical switch. The flow also forwards the IGMP/MLD pack-

ets to the MC_MROUTER_STATIC multicast group, which ovn−northd populates

with all the logical ports that have options :mcast_flood_reports=’true’.

• Priority−90 flows that forward registered IP multicast traffic to their corresponding multi-

cast group, which ovn−northd creates based on learnt IGMP_Group entries. The flows

also forward packets to the MC_MROUTER_FLOOD multicast group, which

ovn−nortdh populates with all the logical ports that are connected to logical routers with

options:mcast_relay=’true’.

• A priority−85 flow that forwards all IP multicast traffic destined to 224.0.0.X to the

MC_FLOOD multicast group, which ovn−northd populates with all enabled logical

OVN 21.06.1 ovn-northd 16

ovn-northd(8) OVN Manual ovn-northd(8)

ports.

• A priority−85 flow that forwards all IP multicast traffic destined to reserved multicast

IPv6 addresses (RFC 4291, 2.7.1, e.g., Solicited-Node multicast) to the MC_FLOOD
multicast group, which ovn−northd populates with all enabled logical ports.

• A priority−80 flow that forwards all unregistered IP multicast traffic to the MC_STATIC
multicast group, which ovn−northd populates with all the logical ports that have options
:mcast_flood=’true’. The flow also forwards unregistered IP multicast traffic to the

MC_MROUTER_FLOOD multicast group, which ovn−northd populates with all the

logical ports connected to logical routers that have options :mcast_relay=’true’.

• A priority−80 flow that drops all unregistered IP multicast traffic if other_config
:mcast_snoop=’true’ and other_config :mcast_flood_unregistered=’false’ and the

switch is not connected to a logical router that has options :mcast_relay=’true’ and the

switch doesn’t hav e any logical port with options :mcast_flood=’true’.

• Priority−80 flows for each IP address/VIP/NAT address owned by a router port connected

to the switch. These flows match ARP requests and ND packets for the specific IP

addresses. Matched packets are forwarded only to the router that owns the IP address and

to the MC_FLOOD_L2 multicast group which contains all non-router logical ports.

• Priority−75 flows for each port connected to a logical router matching self originated

ARP request/ND packets. These packets are flooded to the MC_FLOOD_L2 which con-

tains all non-router logical ports.

• A priority−70 flow that outputs all packets with an Ethernet broadcast or multicast

eth.dst to the MC_FLOOD multicast group.

• One priority−50 flow that matches each known Ethernet address against eth.dst and out-

puts the packet to the single associated output port.

For the Ethernet address on a logical switch port of type router, when that logical switch

port’s addresses column is set to router and the connected logical router port has a gate-

way chassis:

• The flow for the connected logical router port’s Ethernet address is only pro-

grammed on the gateway chassis.

• If the logical router has rules specified in nat with external_mac, then those

addresses are also used to populate the switch’s destination lookup on the chas-

sis where logical_port is resident.

For the Ethernet address on a logical switch port of type router, when that logical switch

port’s addresses column is set to router and the connected logical router port specifies a

reside−on−redirect−chassis and the logical router to which the connected logical router

port belongs to has a distributed gateway LRP:

• The flow for the connected logical router port’s Ethernet address is only pro-

grammed on the gateway chassis.

For each forwarding group configured on the logical switch datapath, a priority−50 flow

that matches on eth.dst == VIP

with an action of fwd_group(childports=args), where args contains comma separated

logical switch child ports to load balance to. If liveness is enabled, then action also

includes liveness=true.

• One priority−0 fallback flow that matches all packets with the action outport =
get_fdb(eth.dst); next;. The action get_fdb gets the port for the eth.dst in the MAC

learning table of the logical switch datapath. If there is no entry for eth.dst in the MAC

learning table, then it stores none in the outport.

Ingress Table 24 Destination unknown

OVN 21.06.1 ovn-northd 17

ovn-northd(8) OVN Manual ovn-northd(8)

This table handles the packets whose destination was not found or and looked up in the MAC learning table

of the logical switch datapath. It contains the following flows.

• If the logical switch has logical ports with ’unknown’ addresses set, then the below logi-

cal flow is added

• Priority 50 flow with the match outport == none then outputs them to the

MC_UNKNOWN multicast group, which ovn−northd populates with all

enabled logical ports that accept unknown destination packets. As a small opti-

mization, if no logical ports accept unknown destination packets, ovn−northd
omits this multicast group and logical flow.

If the logical switch has no logical ports with ’unknown’ address set, then the below logi-

cal flow is added

• Priority 50 flow with the match outport == none and drops the packets.

• One priority−0 fallback flow that outputs the packet to the egress stage with the outport

learnt from get_fdb action.

Egress Table 0: Pre-LB

This table is similar to ingress table Pre−LB. It contains a priority−0 flow that simply moves traffic to the

next table. Moreover it contains a priority−110 flow to move IPv6 Neighbor Discovery traffic to the next ta-

ble. If any load balancing rules exist for the datapath, a priority−100 flow is added with a match of ip and

action of reg0[2] = 1; next; to act as a hint for table Pre−stateful to send IP packets to the connection

tracker for packet de-fragmentation and possibly DNAT the destination VIP to one of the selected backend

for already commited load balanced traffic.

This table also has a priority−110 flow with the match eth.src == E for all logical switch datapaths to move

traffic to the next table. Where E is the service monitor mac defined in the options:svc_monitor_mac
colum of NB_Global table.

Egress Table 1: to−lport Pre-ACLs

This is similar to ingress table Pre−ACLs except for to−lport traffic.

This table also has a priority−110 flow with the match eth.src == E for all logical switch datapaths to move

traffic to the next table. Where E is the service monitor mac defined in the options:svc_monitor_mac
colum of NB_Global table.

This table also has a priority−110 flow with the match outport == I for all logical switch datapaths to move

traffic to the next table. Where I is the peer of a logical router port. This flow is added to skip the connec-

tion tracking of packets which will be entering logical router datapath from logical switch datapath for rout-

ing.

Egress Table 2: Pre-stateful

This is similar to ingress table Pre−stateful. This table adds the below 3 logical flows.

• A Priority−120 flow that send the packets to connection tracker using ct_lb; as the action

so that the already established traffic gets unDNATted from the backend IP to the load

balancer VIP based on a hint provided by the previous tables with a match for reg0[2] ==
1. If the packet was not DNATted earlier, then ct_lb functions like ct_next.

• A priority−100 flow sends the packets to connection tracker based on a hint provided by

the previous tables (with a match for reg0[0] == 1) by using the ct_next; action.

• A priority−0 flow that matches all packets to advance to the next table.

Egress Table 3: from−lport ACL hints

This is similar to ingress table ACL hints.

Egress Table 4: to−lport ACLs

This is similar to ingress table ACLs except for to−lport ACLs.

OVN 21.06.1 ovn-northd 18

ovn-northd(8) OVN Manual ovn-northd(8)

In addition, the following flows are added.

• A priority 34000 logical flow is added for each logical port which has DHCPv4 options

defined to allow the DHCPv4 reply packet and which has DHCPv6 options defined to

allow the DHCPv6 reply packet from the Ingress Table 16: DHCP responses.

• A priority 34000 logical flow is added for each logical switch datapath configured with

DNS records with the match udp.dst = 53 to allow the DNS reply packet from the

Ingress Table 18: DNS responses.

• A priority 34000 logical flow is added for each logical switch datapath with the match

eth.src = E to allow the service monitor request packet generated by ovn−controller with

the action next, where E is the service monitor mac defined in the options:svc_moni-
tor_mac colum of NB_Global table.

Egress Table 5: to−lport QoS Marking

This is similar to ingress table QoS marking except they apply to to−lport QoS rules.

Egress Table 6: to−lport QoS Meter

This is similar to ingress table QoS meter except they apply to to−lport QoS rules.

Egress Table 7: Stateful

This is similar to ingress table Stateful except that there are no rules added for load balancing new connec-

tions.

Egress Table 8: Egress Port Security - IP

This is similar to the port security logic in table Ingress Port Security − IP except that outport, eth.dst,
ip4.dst and ip6.dst are checked instead of inport, eth.src, ip4.src and ip6.src

Egress Table 9: Egress Port Security - L2

This is similar to the ingress port security logic in ingress table Admission Control and Ingress Port
Security − L2, but with important differences. Most obviously, outport and eth.dst are checked instead of

inport and eth.src. Second, packets directed to broadcast or multicast eth.dst are always accepted instead

of being subject to the port security rules; this is implemented through a priority−100 flow that matches on

eth.mcast with action output;. Moreover, to ensure that even broadcast and multicast packets are not deliv-

ered to disabled logical ports, a priority−150 flow for each disabled logical outport overrides the prior-

ity−100 flow with a drop; action. Finally if egress qos has been enabled on a localnet port, the outgoing

queue id is set through set_queue action. Please remember to mark the corresponding physical interface

with ovn−egress−iface set to true in external_ids

Logical Router Datapaths
Logical router datapaths will only exist for Logical_Router rows in the OVN_Northbound database that

do not have enabled set to false

Ingress Table 0: L2 Admission Control

This table drops packets that the router shouldn’t see at all based on their Ethernet headers. It contains the

following flows:

• Priority−100 flows to drop packets with VLAN tags or multicast Ethernet source

addresses.

• For each enabled router port P with Ethernet address E, a priority−50 flow that matches

inport == P && (eth.mcast || eth.dst == E), stores the router port ethernet address and

advances to next table, with action xreg0[0..47]=E; next;.

For the gateway port on a distributed logical router (where one of the logical router ports

specifies a gateway chassis), the above flow matching eth.dst == E is only programmed

on the gateway port instance on the gateway chassis.

OVN 21.06.1 ovn-northd 19

ovn-northd(8) OVN Manual ovn-northd(8)

• For each dnat_and_snat NAT rule on a distributed router that specifies an external Ether-

net address E, a priority−50 flow that matches inport == GW && eth.dst == E, where

GW is the logical router gateway port, with action xreg0[0..47]=E; next;.

This flow is only programmed on the gateway port instance on the chassis where the logi-
cal_port specified in the NAT rule resides.

Other packets are implicitly dropped.

Ingress Table 1: Neighbor lookup

For ARP and IPv6 Neighbor Discovery packets, this table looks into the MAC_Binding records to deter-

mine if OVN needs to learn the mac bindings. Following flows are added:

• For each router port P that owns IP address A, which belongs to subnet S with prefix

length L, if the option always_learn_from_arp_request is true for this router, a prior-

ity−100 flow is added which matches inport == P && arp.spa == S/L && arp.op == 1
(ARP request) with the following actions:

reg9[2] = lookup_arp(inport, arp.spa, arp.sha);
next;

If the option always_learn_from_arp_request is false, the following two flows are

added.

A priority−110 flow is added which matches inport == P && arp.spa == S/L &&
arp.tpa == A && arp.op == 1 (ARP request) with the following actions:

reg9[2] = lookup_arp(inport, arp.spa, arp.sha);
reg9[3] = 1;
next;

A priority−100 flow is added which matches inport == P && arp.spa == S/L &&
arp.op == 1 (ARP request) with the following actions:

reg9[2] = lookup_arp(inport, arp.spa, arp.sha);
reg9[3] = lookup_arp_ip(inport, arp.spa);
next;

If the logical router port P is a distributed gateway router port, additional match is_chas-
sis_resident(cr−P) is added for all these flows.

• A priority−100 flow which matches on ARP reply packets and applies the actions if the

option always_learn_from_arp_request is true:

reg9[2] = lookup_arp(inport, arp.spa, arp.sha);
next;

If the option always_learn_from_arp_request is false, the above actions will be:

reg9[2] = lookup_arp(inport, arp.spa, arp.sha);
reg9[3] = 1;
next;

• A priority−100 flow which matches on IPv6 Neighbor Discovery advertisement packet

and applies the actions if the option always_learn_from_arp_request is true:

reg9[2] = lookup_nd(inport, nd.target, nd.tll);
next;

OVN 21.06.1 ovn-northd 20

ovn-northd(8) OVN Manual ovn-northd(8)

If the option always_learn_from_arp_request is false, the above actions will be:

reg9[2] = lookup_nd(inport, nd.target, nd.tll);
reg9[3] = 1;
next;

• A priority−100 flow which matches on IPv6 Neighbor Discovery solicitation packet and

applies the actions if the option always_learn_from_arp_request is true:

reg9[2] = lookup_nd(inport, ip6.src, nd.sll);
next;

If the option always_learn_from_arp_request is false, the above actions will be:

reg9[2] = lookup_nd(inport, ip6.src, nd.sll);
reg9[3] = lookup_nd_ip(inport, ip6.src);
next;

• A priority−0 fallback flow that matches all packets and applies the action reg9[2] = 1;
next; advancing the packet to the next table.

Ingress Table 2: Neighbor learning

This table adds flows to learn the mac bindings from the ARP and IPv6 Neighbor Solicitation/Advertise-

ment packets if it is needed according to the lookup results from the previous stage.

reg9[2] will be 1 if the lookup_arp/lookup_nd in the previous table was successful or skipped, meaning no

need to learn mac binding from the packet.

reg9[3] will be 1 if the lookup_arp_ip/lookup_nd_ip in the previous table was successful or skipped,

meaning it is ok to learn mac binding from the packet (if reg9[2] is 0).

• A priority−100 flow with the match reg9[2] == 1 || reg9[3] == 0 and advances the packet

to the next table as there is no need to learn the neighbor.

• A priority−90 flow with the match arp and applies the action put_arp(inport, arp.spa,
arp.sha); next;

• A priority−90 flow with the match nd_na and applies the action put_nd(inport, nd.tar-
get, nd.tll); next;

• A priority−90 flow with the match nd_ns and applies the action put_nd(inport, ip6.src,
nd.sll); next;

Ingress Table 3: IP Input

This table is the core of the logical router datapath functionality. It contains the following flows to imple-

ment very basic IP host functionality.

• For each NAT entry of a distributed logical router (with distributed gateway router port)

of type snat, a priority−120 flow with the match inport == P && ip4.src == A advances

the packet to the next pipeline, where P is the distributed logical router port and A is the

external_ip set in the NAT entry. If A is an IPv6 address, then ip6.src is used for the

match.

The above flow is required to handle the routing of the East/west NAT traffic.

• For each BFD port the two following priority−110 flows are added to manage BFD traf-

fic:

• if ip4.src or ip6.src is any IP address owned by the router port and udp.dst ==
3784 , the packet is advanced to the next pipeline stage.

OVN 21.06.1 ovn-northd 21

ovn-northd(8) OVN Manual ovn-northd(8)

• if ip4.dst or ip6.dst is any IP address owned by the router port and udp.dst ==
3784 , the handle_bfd_msg action is executed.

• L3 admission control: A priority−100 flow drops packets that match any of the following:

• ip4.src[28..31] == 0xe (multicast source)

• ip4.src == 255.255.255.255 (broadcast source)

• ip4.src == 127.0.0.0/8 || ip4.dst == 127.0.0.0/8 (localhost source or destination)

• ip4.src == 0.0.0.0/8 || ip4.dst == 0.0.0.0/8 (zero network source or destination)

• ip4.src or ip6.src is any IP address owned by the router, unless the packet was

recirculated due to egress loopback as indicated by REG-
BIT_EGRESS_LOOPBACK.

• ip4.src is the broadcast address of any IP network known to the router.

• A priority−100 flow parses DHCPv6 replies from IPv6 prefix delegation routers (udp.src
== 547 && udp.dst == 546). The handle_dhcpv6_reply is used to send IPv6 prefix del-

eg ation messages to the delegation router.

• ICMP echo reply. These flows reply to ICMP echo requests received for the router’s IP

address. Let A be an IP address owned by a router port. Then, for each A that is an IPv4

address, a priority−90 flow matches on ip4.dst == A and icmp4.type == 8 &&
icmp4.code == 0 (ICMP echo request). For each A that is an IPv6 address, a priority−90

flow matches on ip6.dst == A and icmp6.type == 128 && icmp6.code == 0 (ICMPv6

echo request). The port of the router that receives the echo request does not matter. Also,

the ip.ttl of the echo request packet is not checked, so it complies with RFC 1812, section

4.2.2.9. Flows for ICMPv4 echo requests use the following actions:

ip4.dst <−> ip4.src;
ip.ttl = 255;
icmp4.type = 0;
flags.loopback = 1;
next;

Flows for ICMPv6 echo requests use the following actions:

ip6.dst <−> ip6.src;
ip.ttl = 255;
icmp6.type = 129;
flags.loopback = 1;
next;

• Reply to ARP requests.

These flows reply to ARP requests for the router’s own IP address. The ARP requests are

handled only if the requestor’s IP belongs to the same subnets of the logical router port.

For each router port P that owns IP address A, which belongs to subnet S with prefix

length L, and Ethernet address E, a priority−90 flow matches inport == P && arp.spa
== S/L && arp.op == 1 && arp.tpa == A (ARP request) with the following actions:

eth.dst = eth.src;
eth.src = xreg0[0..47];
arp.op = 2; /* ARP reply. */
arp.tha = arp.sha;
arp.sha = xreg0[0..47];
arp.tpa = arp.spa;
arp.spa = A;

OVN 21.06.1 ovn-northd 22

ovn-northd(8) OVN Manual ovn-northd(8)

outport = inport;
flags.loopback = 1;
output;

For the gateway port on a distributed logical router (where one of the logical router ports

specifies a gateway chassis), the above flows are only programmed on the gateway port

instance on the gateway chassis. This behavior avoids generation of multiple ARP

responses from different chassis, and allows upstream MAC learning to point to the gate-

way chassis.

For the logical router port with the option reside−on−redirect−chassis set (which is cen-

tralized), the above flows are only programmed on the gateway port instance on the gate-

way chassis (if the logical router has a distributed gateway port). This behavior avoids

generation of multiple ARP responses from different chassis, and allows upstream MAC

learning to point to the gateway chassis.

• Reply to IPv6 Neighbor Solicitations. These flows reply to Neighbor Solicitation requests

for the router’s own IPv6 address and populate the logical router’s mac binding table.

For each router port P that owns IPv6 address A, solicited node address S, and Ethernet

address E, a priority−90 flow matches inport == P && nd_ns && ip6.dst == {A, E}
&& nd.target == A with the following actions:

nd_na_router {
eth.src = xreg0[0..47];
ip6.src = A;

nd.target = A;

nd.tll = xreg0[0..47];
outport = inport;
flags.loopback = 1;
output;

};

For the gateway port on a distributed logical router (where one of the logical router ports

specifies a gateway chassis), the above flows replying to IPv6 Neighbor Solicitations are

only programmed on the gateway port instance on the gateway chassis. This behavior

avoids generation of multiple replies from different chassis, and allows upstream MAC

learning to point to the gateway chassis.

• These flows reply to ARP requests or IPv6 neighbor solicitation for the virtual IP

addresses configured in the router for NAT (both DNAT and SNAT) or load balancing.

IPv4: For a configured NAT (both DNAT and SNAT) IP address or a load balancer IPv4

VIP A, for each router port P with Ethernet address E, a priority−90 flow matches arp.op
== 1 && arp.tpa == A (ARP request) with the following actions:

eth.dst = eth.src;
eth.src = xreg0[0..47];
arp.op = 2; /* ARP reply. */
arp.tha = arp.sha;
arp.sha = xreg0[0..47];
arp.tpa <−> arp.spa;
outport = inport;
flags.loopback = 1;
output;

OVN 21.06.1 ovn-northd 23

ovn-northd(8) OVN Manual ovn-northd(8)

IPv4: For a configured load balancer IPv4 VIP, a similar flow is added with the additional

match inport == P.

If the router port P is a distributed gateway router port, then the is_chassis_resident(P) is

also added in the match condition for the load balancer IPv4 VIP A.

IPv6: For a configured NAT (both DNAT and SNAT) IP address or a load balancer IPv6

VIP A, solicited node address S, for each router port P with Ethernet address E, a prior-

ity−90 flow matches inport == P && nd_ns && ip6.dst == {A, S} && nd.target == A

with the following actions:

eth.dst = eth.src;
nd_na {

eth.src = xreg0[0..47];
nd.tll = xreg0[0..47];
ip6.src = A;

nd.target = A;

outport = inport;
flags.loopback = 1;
output;

}

If the router port P is a distributed gateway router port, then the is_chassis_resident(P) is

also added in the match condition for the load balancer IPv6 VIP A.

For the gateway port on a distributed logical router with NAT (where one of the logical

router ports specifies a gateway chassis):

• If the corresponding NAT rule cannot be handled in a distributed manner, then a

priority−92 flow is programmed on the gateway port instance on the gateway

chassis. A priority−91 drop flow is programmed on the other chassis when ARP

requests/NS packets are received on the gateway port. This behavior avoids gen-

eration of multiple ARP responses from different chassis, and allows upstream

MAC learning to point to the gateway chassis.

• If the corresponding NAT rule can be handled in a distributed manner, then this

flow is only programmed on the gateway port instance where the logical_port
specified in the NAT rule resides.

Some of the actions are different for this case, using the external_mac specified

in the NAT rule rather than the gateway port’s Ethernet address E:

eth.src = external_mac;

arp.sha = external_mac;

or in the case of IPv6 neighbor solicition:

eth.src = external_mac;

nd.tll = external_mac;

This behavior avoids generation of multiple ARP responses from different chas-

sis, and allows upstream MAC learning to point to the correct chassis.

• Priority−85 flows which drops the ARP and IPv6 Neighbor Discovery packets.

• A priority−84 flow explicitly allows IPv6 multicast traffic that is supposed to reach the

router pipeline (i.e., router solicitation and router advertisement packets).

• A priority−83 flow explicitly drops IPv6 multicast traffic that is destined to reserved mul-

ticast groups.

OVN 21.06.1 ovn-northd 24

ovn-northd(8) OVN Manual ovn-northd(8)

• A priority−82 flow allows IP multicast traffic if options:mcast_relay=’true’, otherwise

drops it.

• UDP port unreachable. Priority−80 flows generate ICMP port unreachable messages in

reply to UDP datagrams directed to the router’s IP address, except in the special case of

gateways, which accept traffic directed to a router IP for load balancing and NAT pur-

poses.

These flows should not match IP fragments with nonzero offset.

• TCP reset. Priority−80 flows generate TCP reset messages in reply to TCP datagrams

directed to the router’s IP address, except in the special case of gateways, which accept

traffic directed to a router IP for load balancing and NAT purposes.

These flows should not match IP fragments with nonzero offset.

• Protocol or address unreachable. Priority−70 flows generate ICMP protocol or address

unreachable messages for IPv4 and IPv6 respectively in reply to packets directed to the

router’s IP address on IP protocols other than UDP, TCP, and ICMP, except in the special

case of gateways, which accept traffic directed to a router IP for load balancing purposes.

These flows should not match IP fragments with nonzero offset.

• Drop other IP traffic to this router. These flows drop any other traffic destined to an IP

address of this router that is not already handled by one of the flows above, which

amounts to ICMP (other than echo requests) and fragments with nonzero offsets. For

each IP address A owned by the router, a priority−60 flow matches ip4.dst == A or

ip6.dst == A and drops the traffic. An exception is made and the above flow is not added

if the router port’s own IP address is used to SNAT packets passing through that router.

The flows above handle all of the traffic that might be directed to the router itself. The following flows (with

lower priorities) handle the remaining traffic, potentially for forwarding:

• Drop Ethernet local broadcast. A priority−50 flow with match eth.bcast drops traffic des-

tined to the local Ethernet broadcast address. By definition this traffic should not be for-

warded.

• ICMP time exceeded. For each router port P, whose IP address is A, a priority−40 flow

with match inport == P && ip.ttl == {0, 1} && !ip.later_frag matches packets whose

TTL has expired, with the following actions to send an ICMP time exceeded reply for

IPv4 and IPv6 respectively:

icmp4 {
icmp4.type = 11; /* Time exceeded. */
icmp4.code = 0; /* TTL exceeded in transit. */
ip4.dst = ip4.src;
ip4.src = A;

ip.ttl = 255;
next;

};
icmp6 {

icmp6.type = 3; /* Time exceeded. */
icmp6.code = 0; /* TTL exceeded in transit. */
ip6.dst = ip6.src;
ip6.src = A;

ip.ttl = 255;
next;

};

• TTL discard. A priority−30 flow with match ip.ttl == {0, 1} and actions drop; drops

other packets whose TTL has expired, that should not receive a ICMP error reply (i.e.

OVN 21.06.1 ovn-northd 25

ovn-northd(8) OVN Manual ovn-northd(8)

fragments with nonzero offset).

• Next table. A priority−0 flows match all packets that aren’t already handled and uses

actions next; to feed them to the next table.

Ingress Table 4: DEFRAG

This is to send packets to connection tracker for tracking and defragmentation. It contains a priority−0 flow

that simply moves traffic to the next table.

If load balancing rules with virtual IP addresses (and ports) are configured in OVN_Northbound database

for a Gateway router, a priority−100 flow is added for each configured virtual IP address VIP. For IPv4

VIPs the flow matches ip && ip4.dst == VIP. For IPv6 VIPs, the flow matches ip && ip6.dst == VIP. The

flow uses the action ct_next; to send IP packets to the connection tracker for packet de-fragmentation and

tracking before sending it to the next table.

If ECMP routes with symmetric reply are configured in the OVN_Northbound database for a gateway

router, a priority−300 flow is added for each router port on which symmetric replies are configured. The

matching logic for these ports essentially reverses the configured logic of the ECMP route. So for instance,

a route with a destination routing policy will instead match if the source IP address matches the static

route’s prefix. The flow uses the action ct_next to send IP packets to the connection tracker for packet de-

fragmentation and tracking before sending it to the next table.

Ingress Table 5: UNSNAT

This is for already established connections’ reverse traffic. i.e., SNAT has already been done in egress pipe-

line and now the packet has entered the ingress pipeline as part of a reply. It is unSNATted here.

Ingress Table 5: UNSNAT on Gateway and Distributed Routers

• If the Router (Gateway or Distributed) is configured with load balancers, then below

lflows are added:

For each IPv4 address A defined as load balancer VIP with the protocol P (and the proto-

col port T if defined) is also present as an external_ip in the NAT table, a priority−120

logical flow is added with the match ip4 && ip4.dst == A && P with the action next; to

advance the packet to the next table. If the load balancer has protocol port B defined, then

the match also has P.dst == B.

The above flows are also added for IPv6 load balancers.

Ingress Table 5: UNSNAT on Gateway Routers

• If the Gateway router has been configured to force SNAT any previously DNATted pack-

ets to B, a priority−110 flow matches ip && ip4.dst == B or ip && ip6.dst == B with an

action ct_snat; .

If the Gateway router is configured with lb_force_snat_ip=router_ip then for every logi-

cal router port P attached to the Gateway router with the router ip B, a priority−110 flow

is added with the match inport == P && ip4.dst == B or inport == P && ip6.dst == B

with an action ct_snat; .

If the Gateway router has been configured to force SNAT any previously load-balanced

packets to B, a priority−100 flow matches ip && ip4.dst == B or ip && ip6.dst == B

with an action ct_snat; .

For each NAT configuration in the OVN Northbound database, that asks to change the

source IP address of a packet from A to B, a priority−90 flow matches ip && ip4.dst ==
B or ip && ip6.dst == B with an action ct_snat; . If the NAT rule is of type

dnat_and_snat and has stateless=true in the options, then the action would be ip4/6.dst=
(B).

A priority−0 logical flow with match 1 has actions next;.

Ingress Table 5: UNSNAT on Distributed Routers

OVN 21.06.1 ovn-northd 26

ovn-northd(8) OVN Manual ovn-northd(8)

• For each configuration in the OVN Northbound database, that asks to change the source

IP address of a packet from A to B, a priority−100 flow matches ip && ip4.dst == B &&
inport == GW or ip && ip6.dst == B && inport == GW where GW is the logical router

gateway port, with an action ct_snat;. If the NAT rule is of type dnat_and_snat and has

stateless=true in the options, then the action would be ip4/6.dst= (B).

If the NAT rule cannot be handled in a distributed manner, then the priority−100 flow

above is only programmed on the gateway chassis.

A priority−0 logical flow with match 1 has actions next;.

Ingress Table 6: DNAT

Packets enter the pipeline with destination IP address that needs to be DNATted from a virtual IP address to

a real IP address. Packets in the reverse direction needs to be unDNAT ed.

Ingress Table 6: Load balancing DNAT rules

Following load balancing DNAT flows are added for Gateway router or Router with gateway port. These

flows are programmed only on the gateway chassis. These flows do not get programmed for load balancers

with IPv6 VIPs.

• If controller_event has been enabled for all the configured load balancing rules for a

Gateway router or Router with gateway port in OVN_Northbound database that does not

have configured backends, a priority−130 flow is added to trigger ovn-controller events

whenever the chassis receives a packet for that particular VIP. If ev ent−elb meter has

been previously created, it will be associated to the empty_lb logical flow

• For all the configured load balancing rules for a Gateway router or Router with gateway

port in OVN_Northbound database that includes a L4 port PORT of protocol P and IPv4

or IPv6 address VIP, a priority−120 flow that matches on ct.new && ip && ip4.dst ==
VIP && P && P.dst == PORT

(ip6.dst == VIP in the IPv6 case) with an action of ct_lb(args), where args contains

comma separated IPv4 or IPv6 addresses (and optional port numbers) to load balance to.

If the router is configured to force SNAT any load-balanced packets, the above action will

be replaced by flags.force_snat_for_lb = 1; ct_lb(args);. If the load balancing rule is

configured with skip_snat set to true, the above action will be replaced by

flags.skip_snat_for_lb = 1; ct_lb(args);. If health check is enabled, then args will only

contain those endpoints whose service monitor status entry in OVN_Southbound db is

either online or empty.

• For all the configured load balancing rules for a router in OVN_Northbound database

that includes a L4 port PORT of protocol P and IPv4 or IPv6 address VIP, a priority−120

flow that matches on ct.est && ip && ip4.dst == VIP && P && P.dst == PORT

(ip6.dst == VIP in the IPv6 case) with an action of ct_dnat;. If the router is configured

to force SNAT any load-balanced packets, the above action will be replaced by

flags.force_snat_for_lb = 1; ct_dnat;. If the load balancing rule is configured with

skip_snat set to true, the above action will be replaced by flags.skip_snat_for_lb = 1;
ct_dnat;.

• For all the configured load balancing rules for a router in OVN_Northbound database

that includes just an IP address VIP to match on, a priority−110 flow that matches on

ct.new && ip && ip4.dst == VIP (ip6.dst == VIP in the IPv6 case) with an action of

ct_lb(args), where args contains comma separated IPv4 or IPv6 addresses. If the router is

configured to force SNAT any load-balanced packets, the above action will be replaced

by flags.force_snat_for_lb = 1; ct_lb(args);. If the load balancing rule is configured with

skip_snat set to true, the above action will be replaced by flags.skip_snat_for_lb = 1;
ct_lb(args);.

• For all the configured load balancing rules for a router in OVN_Northbound database

that includes just an IP address VIP to match on, a priority−110 flow that matches on

OVN 21.06.1 ovn-northd 27

ovn-northd(8) OVN Manual ovn-northd(8)

ct.est && ip && ip4.dst == VIP (or ip6.dst == VIP) with an action of ct_dnat;. If the

router is configured to force SNAT any load-balanced packets, the above action will be

replaced by flags.force_snat_for_lb = 1; ct_dnat;. If the load balancing rule is config-

ured with skip_snat set to true, the above action will be replaced by

flags.skip_snat_for_lb = 1; ct_dnat;.

• If the load balancer is created with −−reject option and it has no active backends, a TCP

reset segment (for tcp) or an ICMP port unreachable packet (for all other kind of traffic)

will be sent whenever an incoming packet is received for this load-balancer. Please note

using −−reject option will disable empty_lb SB controller event for this load balancer.

Ingress Table 6: DNAT on Gateway Routers

• For each configuration in the OVN Northbound database, that asks to change the destina-

tion IP address of a packet from A to B, a priority−100 flow matches ip && ip4.dst == A

or ip && ip6.dst == A with an action flags.loopback = 1; ct_dnat(B);. If the Gateway

router is configured to force SNAT any DNATed packet, the above action will be replaced

by flags.force_snat_for_dnat = 1; flags.loopback = 1; ct_dnat(B);. If the NAT rule is of

type dnat_and_snat and has stateless=true in the options, then the action would be

ip4/6.dst= (B).

If the NAT rule has allowed_ext_ips configured, then there is an additional match ip4.src
== allowed_ext_ips . Similarly, for IPV6, match would be ip6.src == allowed_ext_ips.

If the NAT rule has exempted_ext_ips set, then there is an additional flow configured at

priority 101. The flow matches if source ip is an exempted_ext_ip and the action is next;
. This flow is used to bypass the ct_dnat action for a packet originating from

exempted_ext_ips.

• For all IP packets of a Gateway router, a priority−50 flow with an action flags.loopback =
1; ct_dnat;.

• A priority−0 logical flow with match 1 has actions next;.

Ingress Table 6: DNAT on Distributed Routers

On distributed routers, the DNAT table only handles packets with destination IP address that needs to be

DNATted from a virtual IP address to a real IP address. The unDNAT processing in the reverse direction is

handled in a separate table in the egress pipeline.

• For each configuration in the OVN Northbound database, that asks to change the destina-

tion IP address of a packet from A to B, a priority−100 flow matches ip && ip4.dst == B

&& inport == GW, where GW is the logical router gateway port, with an action

ct_dnat(B);. The match will include ip6.dst == B in the IPv6 case. If the NAT rule is of

type dnat_and_snat and has stateless=true in the options, then the action would be

ip4/6.dst=(B).

If the NAT rule cannot be handled in a distributed manner, then the priority−100 flow

above is only programmed on the gateway chassis.

If the NAT rule has allowed_ext_ips configured, then there is an additional match ip4.src
== allowed_ext_ips . Similarly, for IPV6, match would be ip6.src == allowed_ext_ips.

If the NAT rule has exempted_ext_ips set, then there is an additional flow configured at

priority 101. The flow matches if source ip is an exempted_ext_ip and the action is next;
. This flow is used to bypass the ct_dnat action for a packet originating from

exempted_ext_ips.

A priority−0 logical flow with match 1 has actions next;.

Ingress Table 7: ECMP symmetric reply processing

• If ECMP routes with symmetric reply are configured in the OVN_Northbound database

for a gateway router, a priority−100 flow is added for each router port on which

OVN 21.06.1 ovn-northd 28

ovn-northd(8) OVN Manual ovn-northd(8)

symmetric replies are configured. The matching logic for these ports essentially reverses

the configured logic of the ECMP route. So for instance, a route with a destination rout-

ing policy will instead match if the source IP address matches the static route’s prefix.

The flow uses the action ct_commit { ct_label.ecmp_reply_eth = eth.src;" "
ct_label.ecmp_reply_port = K;}; next; to commit the connection and storing eth.src
and the ECMP reply port binding tunnel key K in the ct_label.

Ingress Table 8: IPv6 ND RA option processing

• A priority−50 logical flow is added for each logical router port configured with IPv6 ND

RA options which matches IPv6 ND Router Solicitation packet and applies the action

put_nd_ra_opts and advances the packet to the next table.

reg0[5] = put_nd_ra_opts(options);next;

For a valid IPv6 ND RS packet, this transforms the packet into an IPv6 ND RA reply and

sets the RA options to the packet and stores 1 into reg0[5]. For other kinds of packets, it

just stores 0 into reg0[5]. Either way, it continues to the next table.

• A priority−0 logical flow with match 1 has actions next;.

Ingress Table 9: IPv6 ND RA responder

This table implements IPv6 ND RA responder for the IPv6 ND RA replies generated by the previous table.

• A priority−50 logical flow is added for each logical router port configured with IPv6 ND

RA options which matches IPv6 ND RA packets and reg0[5] == 1 and responds back to

the inport after applying these actions. If reg0[5] is set to 1, it means that the action

put_nd_ra_opts was successful.

eth.dst = eth.src;
eth.src = E;

ip6.dst = ip6.src;
ip6.src = I;

outport = P;

flags.loopback = 1;
output;

where E is the MAC address and I is the IPv6 link local address of the logical router port.

(This terminates packet processing in ingress pipeline; the packet does not go to the next

ingress table.)

• A priority−0 logical flow with match 1 has actions next;.

Ingress Table 10: IP Routing

A packet that arrives at this table is an IP packet that should be routed to the address in ip4.dst or ip6.dst.
This table implements IP routing, setting reg0 (or xxreg0 for IPv6) to the next-hop IP address (leaving

ip4.dst or ip6.dst, the packet’s final destination, unchanged) and advances to the next table for ARP resolu-

tion. It also sets reg1 (or xxreg1) to the IP address owned by the selected router port (ingress table ARP
Request will generate an ARP request, if needed, with reg0 as the target protocol address and reg1 as the

source protocol address).

For ECMP routes, i.e. multiple static routes with same policy and prefix but different nexthops, the above

actions are deferred to next table. This table, instead, is responsible for determine the ECMP group id and

select a member id within the group based on 5-tuple hashing. It stores group id in reg8[0..15] and member

id in reg8[16..31]. This step is skipped if the traffic going out the ECMP route is reply traffic, and the

ECMP route was configured to use symmetric replies. Instead, the stored ct_label value is used to choose

the destination. The least significant 48 bits of the ct_label tell the destination MAC address to which the

packet should be sent. The next 16 bits tell the logical router port on which the packet should be sent. These

OVN 21.06.1 ovn-northd 29

ovn-northd(8) OVN Manual ovn-northd(8)

values in the ct_label are set when the initial ingress traffic is received over the ECMP route.

This table contains the following logical flows:

• Priority−550 flow that drops IPv6 Router Solicitation/Advertisement packets that were

not processed in previous tables.

• Priority−500 flows that match IP multicast traffic destined to groups registered on any of

the attached switches and sets outport to the associated multicast group that will eventu-

ally flood the traffic to all interested attached logical switches. The flows also decrement

TTL.

• Priority−450 flow that matches unregistered IP multicast traffic and sets outport to the

MC_STATIC multicast group, which ovn−northd populates with the logical ports that

have options :mcast_flood=’true’. If no router ports are configured to flood multicast

traffic the packets are dropped.

• IPv4 routing table. For each route to IPv4 network N with netmask M, on router port P

with IP address A and Ethernet address E, a logical flow with match ip4.dst == N/M,

whose priority is the number of 1-bits in M, has the following actions:

ip.ttl−−;
reg8[0..15] = 0;
reg0 = G;

reg1 = A;

eth.src = E;

outport = P;

flags.loopback = 1;
next;

(Ingress table 1 already verified that ip.ttl−−; will not yield a TTL exceeded error.)

If the route has a gateway, G is the gateway IP address. Instead, if the route is from a con-

figured static route, G is the next hop IP address. Else it is ip4.dst.

• IPv6 routing table. For each route to IPv6 network N with netmask M, on router port P

with IP address A and Ethernet address E, a logical flow with match in CIDR notation

ip6.dst == N/M, whose priority is the integer value of M, has the following actions:

ip.ttl−−;
reg8[0..15] = 0;
xxreg0 = G;

xxreg1 = A;

eth.src = E;

outport = inport;
flags.loopback = 1;
next;

(Ingress table 1 already verified that ip.ttl−−; will not yield a TTL exceeded error.)

If the route has a gateway, G is the gateway IP address. Instead, if the route is from a con-

figured static route, G is the next hop IP address. Else it is ip6.dst.

If the address A is in the link-local scope, the route will be limited to sending on the

ingress port.

• For ECMP routes, they are grouped by policy and prefix. An unique id (non-zero) is

assigned to each group, and each member is also assigned an unique id (non-zero) within

each group.

OVN 21.06.1 ovn-northd 30

ovn-northd(8) OVN Manual ovn-northd(8)

For each IPv4/IPv6 ECMP group with group id GID and member ids MID1, MID2, ..., a

logical flow with match in CIDR notation ip4.dst == N/M, or ip6.dst == N/M, whose pri-

ority is the integer value of M, has the following actions:

ip.ttl−−;
flags.loopback = 1;
reg8[0..15] = GID;

select(reg8[16..31], MID1, MID2, ...);

Ingress Table 11: IP_ROUTING_ECMP

This table implements the second part of IP routing for ECMP routes following the previous table. If a

packet matched a ECMP group in the previous table, this table matches the group id and member id stored

from the previous table, setting reg0 (or xxreg0 for IPv6) to the next-hop IP address (leaving ip4.dst or

ip6.dst, the packet’s final destination, unchanged) and advances to the next table for ARP resolution. It also

sets reg1 (or xxreg1) to the IP address owned by the selected router port (ingress table ARP Request will

generate an ARP request, if needed, with reg0 as the target protocol address and reg1 as the source proto-

col address).

This processing is skipped for reply traffic being sent out of an ECMP route if the route was configured to

use symmetric replies.

This table contains the following logical flows:

• A priority−150 flow that matches reg8[0..15] == 0 with action next; directly bypasses

packets of non-ECMP routes.

• For each member with ID MID in each ECMP group with ID GID, a priority−100 flow

with match reg8[0..15] == GID && reg8[16..31] == MID has following actions:

[xx]reg0 = G;

[xx]reg1 = A;

eth.src = E;

outport = P;

Ingress Table 12: Router policies

This table adds flows for the logical router policies configured on the logical router. Please see the

OVN_Northbound database Logical_Router_Policy table documentation in ovn−nb for supported

actions.

• For each router policy configured on the logical router, a logical flow is added with speci-

fied priority, match and actions.

• If the policy action is reroute with 2 or more nexthops defined, then the logical flow is

added with the following actions:

reg8[0..15] = GID;

reg8[16..31] = select(1,..n);

where GID is the ECMP group id generated by ovn−northd for this policy and n is the

number of nexthops. select action selects one of the nexthop member id, stores it in the

register reg8[16..31] and advances the packet to the next stage.

• If the policy action is reroute with just one nexhop, then the logical flow is added with

the following actions:

[xx]reg0 = H;

eth.src = E;

outport = P;

reg8[0..15] = 0;

OVN 21.06.1 ovn-northd 31

ovn-northd(8) OVN Manual ovn-northd(8)

flags.loopback = 1;
next;

where H is the nexthop defined in the router policy, E is the ethernet address of the logi-

cal router port from which the nexthop is reachable and P is the logical router port from

which the nexthop is reachable.

• If a router policy has the option pkt_mark=m set and if the action is not drop, then the

action also includes pkt.mark = m to mark the packet with the marker m.

Ingress Table 13: ECMP handling for router policies

This table handles the ECMP for the router policies configured with multiple nexthops.

• A priority−150 flow is added to advance the packet to the next stage if the ECMP group

id register reg8[0..15] is 0.

• For each ECMP reroute router policy with multiple nexthops, a priority−100 flow is

added for each nexthop H with the match reg8[0..15] == GID && reg8[16..31] == M

where GID is the router policy group id generated by ovn−northd and M is the member

id of the nexthop H generated by ovn−northd. The following actions are added to the

flow:

[xx]reg0 = H;

eth.src = E;

outport = P

"flags.loopback = 1; "
"next;"

where H is the nexthop defined in the router policy, E is the ethernet address of the logi-

cal router port from which the nexthop is reachable and P is the logical router port from

which the nexthop is reachable.

Ingress Table 14: ARP/ND Resolution

Any packet that reaches this table is an IP packet whose next-hop IPv4 address is in reg0 or IPv6 address is

in xxreg0. (ip4.dst or ip6.dst contains the final destination.) This table resolves the IP address in reg0 (or

xxreg0) into an output port in outport and an Ethernet address in eth.dst, using the following flows:

• A priority−500 flow that matches IP multicast traffic that was allowed in the routing pipe-

line. For this kind of traffic the outport was already set so the flow just advances to the

next table.

• Static MAC bindings. MAC bindings can be known statically based on data in the

OVN_Northbound database. For router ports connected to logical switches, MAC bind-

ings can be known statically from the addresses column in the Logical_Switch_Port ta-

ble. For router ports connected to other logical routers, MAC bindings can be known stat-

ically from the mac and networks column in the Logical_Router_Port table. (Note: the

flow is NOT installed for the IP addresses that belong to a neighbor logical router port if

the current router has the options:dynamic_neigh_routers set to true)

For each IPv4 address A whose host is known to have Ethernet address E on router port

P, a priority−100 flow with match outport === P && reg0 == A has actions eth.dst = E;
next;.

For each virtual ip A configured on a logical port of type virtual and its virtual parent set

in its corresponding Port_Binding record and the virtual parent with the Ethernet address

E and the virtual ip is reachable via the router port P, a priority−100 flow with match out-
port === P && reg0 == A has actions eth.dst = E; next;.

OVN 21.06.1 ovn-northd 32

ovn-northd(8) OVN Manual ovn-northd(8)

For each virtual ip A configured on a logical port of type virtual and its virtual parent not
set in its corresponding Port_Binding record and the virtual ip A is reachable via the

router port P, a priority−100 flow with match outport === P && reg0 == A has actions

eth.dst = 00:00:00:00:00:00; next;. This flow is added so that the ARP is always

resolved for the virtual ip A by generating ARP request and not consulting the

MAC_Binding table as it can have incorrect value for the virtual ip A.

For each IPv6 address A whose host is known to have Ethernet address E on router port

P, a priority−100 flow with match outport === P && xxreg0 == A has actions eth.dst =
E; next;.

For each logical router port with an IPv4 address A and a mac address of E that is reach-

able via a different logical router port P, a priority−100 flow with match outport === P

&& reg0 == A has actions eth.dst = E; next;.

For each logical router port with an IPv6 address A and a mac address of E that is reach-

able via a different logical router port P, a priority−100 flow with match outport === P

&& xxreg0 == A has actions eth.dst = E; next;.

• Static MAC bindings from NAT entries. MAC bindings can also be known for the entries

in the NAT table. Below flows are programmed for distributed logical routers i.e with a

distributed router port.

For each row in the NAT table with IPv4 address A in the external_ip column of NAT ta-

ble, a priority−100 flow with the match outport === P && reg0 == A has actions

eth.dst = E; next;, where P is the distributed logical router port, E is the Ethernet address

if set in the external_mac column of NAT table for of type dnat_and_snat, otherwise

the Ethernet address of the distributed logical router port.

For IPv6 NAT entries, same flows are added, but using the register xxreg0 for the match.

• Traffic with IP destination an address owned by the router should be dropped. Such traffic

is normally dropped in ingress table IP Input except for IPs that are also shared with

SNAT rules. However, if there was no unSNAT operation that happened successfully until

this point in the pipeline and the destination IP of the packet is still a router owned IP, the

packets can be safely dropped.

A priority−1 logical flow with match ip4.dst = {..} matches on traffic destined to router

owned IPv4 addresses which are also SNAT IPs. This flow has action drop;.

A priority−1 logical flow with match ip6.dst = {..} matches on traffic destined to router

owned IPv6 addresses which are also SNAT IPs. This flow has action drop;.

• Dynamic MAC bindings. These flows resolve MAC-to-IP bindings that have become

known dynamically through ARP or neighbor discovery. (The ingress table ARP
Request will issue an ARP or neighbor solicitation request for cases where the binding is

not yet known.)

A priority−0 logical flow with match ip4 has actions get_arp(outport, reg0); next;.

A priority−0 logical flow with match ip6 has actions get_nd(outport, xxreg0); next;.

• For a distributed gateway LRP with redirect−type set to bridged, a priority−50 flow will

match outport == "ROUTER_PORT" and !is_chassis_resident
("cr−ROUTER_PORT") has actions eth.dst = E; next;, where E is the ethernet address

of the logical router port.

Ingress Table 15: Check packet length

For distributed logical routers with distributed gateway port configured with options:gateway_mtu to a

valid integer value, this table adds a priority−50 logical flow with the match ip4 && outport ==
GW_PORT where GW_PORT is the distributed gateway router port and applies the action

check_pkt_larger and advances the packet to the next table.

OVN 21.06.1 ovn-northd 33

ovn-northd(8) OVN Manual ovn-northd(8)

REGBIT_PKT_LARGER = check_pkt_larger(L); next;

where L is the packet length to check for. If the packet is larger than L, it stores 1 in the register bit REG-
BIT_PKT_LARGER. The value of L is taken from options:gateway_mtu column of Logi-
cal_Router_Port row.

This table adds one priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 16: Handle larger packets

For distributed logical routers with distributed gateway port configured with options:gateway_mtu to a

valid integer value, this table adds the following priority−50 logical flow for each logical router port with

the match inport == LRP && outport == GW_PORT && REGBIT_PKT_LARGER, where LRP is the

logical router port and GW_PORT is the distributed gateway router port and applies the following action for

ipv4 and ipv6 respectively:

icmp4 {
icmp4.type = 3; /* Destination Unreachable. */
icmp4.code = 4; /* Frag Needed and DF was Set. */
icmp4.frag_mtu = M;

eth.dst = E;

ip4.dst = ip4.src;
ip4.src = I;

ip.ttl = 255;
REGBIT_EGRESS_LOOPBACK = 1;
next(pipeline=ingress, table=0);

};
icmp6 {

icmp6.type = 2;
icmp6.code = 0;
icmp6.frag_mtu = M;

eth.dst = E;

ip6.dst = ip6.src;
ip6.src = I;

ip.ttl = 255;
REGBIT_EGRESS_LOOPBACK = 1;
next(pipeline=ingress, table=0);

};

• Where M is the (fragment MTU - 58) whose value is taken from options:gateway_mtu
column of Logical_Router_Port row.

• E is the Ethernet address of the logical router port.

• I is the IPv4/IPv6 address of the logical router port.

This table adds one priority−0 fallback flow that matches all packets and advances to the next table.

Ingress Table 17: Gateway Redirect

For distributed logical routers where one of the logical router ports specifies a gateway chassis, this table

redirects certain packets to the distributed gateway port instance on the gateway chassis. This table has the

following flows:

• For each NAT rule in the OVN Northbound database that can be handled in a distributed

manner, a priority−100 logical flow with match ip4.src == B && outport == GW &&

is_chassis_resident(P), where GW is the logical router distributed gateway port and P is

the NAT logical port. IP traffic matching the above rule will be managed locally setting

reg1 to C and eth.src to D, where C is NAT external ip and D is NAT external mac.

OVN 21.06.1 ovn-northd 34

ovn-northd(8) OVN Manual ovn-northd(8)

• For each NAT rule in the OVN Northbound database that can be handled in a distributed

manner, a priority−80 logical flow with drop action if the NAT logical port is a virtual

port not claimed by any chassis yet.

• A priority−50 logical flow with match outport == GW has actions outport = CR; next;,
where GW is the logical router distributed gateway port and CR is the chassisredirect
port representing the instance of the logical router distributed gateway port on the gate-

way chassis.

• A priority−0 logical flow with match 1 has actions next;.

Ingress Table 18: ARP Request

In the common case where the Ethernet destination has been resolved, this table outputs the packet. Other-

wise, it composes and sends an ARP or IPv6 Neighbor Solicitation request. It holds the following flows:

• Unknown MAC address. A priority−100 flow for IPv4 packets with match eth.dst ==
00:00:00:00:00:00 has the following actions:

arp {
eth.dst = ff:ff:ff:ff:ff:ff;
arp.spa = reg1;
arp.tpa = reg0;
arp.op = 1; /* ARP request. */
output;

};

Unknown MAC address. For each IPv6 static route associated with the router with the

nexthop IP: G, a priority−200 flow for IPv6 packets with match eth.dst ==
00:00:00:00:00:00 && xxreg0 == G with the following actions is added:

nd_ns {
eth.dst = E;

ip6.dst = I

nd.target = G;

output;
};

Where E is the multicast mac derived from the Gateway IP, I is the solicited-node multi-

cast address corresponding to the target address G.

Unknown MAC address. A priority−100 flow for IPv6 packets with match eth.dst ==
00:00:00:00:00:00 has the following actions:

nd_ns {
nd.target = xxreg0;
output;

};

(Ingress table IP Routing initialized reg1 with the IP address owned by outport and

(xx)reg0 with the next-hop IP address)

The IP packet that triggers the ARP/IPv6 NS request is dropped.

• Known MAC address. A priority−0 flow with match 1 has actions output;.

Egress Table 0: UNDNAT

This is for already established connections’ reverse traffic. i.e., DNAT has already been done in ingress

pipeline and now the packet has entered the egress pipeline as part of a reply. For NAT on a distributed

router, it is unDNATted here. For Gateway routers, the unDNAT processing is carried out in the ingress

OVN 21.06.1 ovn-northd 35

ovn-northd(8) OVN Manual ovn-northd(8)

DNAT table.

• For all the configured load balancing rules for a router with gateway port in OVN_North-
bound database that includes an IPv4 address VIP, for every backend IPv4 address B

defined for the VIP a priority−120 flow is programmed on gateway chassis that matches

ip && ip4.src == B && outport == GW, where GW is the logical router gateway port

with an action ct_dnat;. If the backend IPv4 address B is also configured with L4 port

PORT of protocol P, then the match also includes P.src == PORT. These flows are not

added for load balancers with IPv6 VIPs.

If the router is configured to force SNAT any load-balanced packets, above action will be

replaced by flags.force_snat_for_lb = 1; ct_dnat;.

• For each configuration in the OVN Northbound database that asks to change the destina-

tion IP address of a packet from an IP address of A to B, a priority−100 flow matches ip
&& ip4.src == B && outport == GW, where GW is the logical router gateway port,

with an action ct_dnat;. If the NAT rule is of type dnat_and_snat and has stateless=true
in the options, then the action would be ip4/6.src= (B).

If the NAT rule cannot be handled in a distributed manner, then the priority−100 flow

above is only programmed on the gateway chassis.

If the NAT rule can be handled in a distributed manner, then there is an additional action

eth.src = EA;, where EA is the ethernet address associated with the IP address A in the

NAT rule. This allows upstream MAC learning to point to the correct chassis.

• A priority−0 logical flow with match 1 has actions next;.

Egress Table 1: SNAT

Packets that are configured to be SNAT ed get their source IP address changed based on the configuration in

the OVN Northbound database.

• A priority−120 flow to advance the IPv6 Neighbor solicitation packet to next table to skip

SNAT . In the case where ovn-controller injects an IPv6 Neighbor Solicitation packet (for

nd_ns action) we don’t want the packet to go throught conntrack.

Egress Table 1: SNAT on Gateway Routers

• If the Gateway router in the OVN Northbound database has been configured to force

SNAT a packet (that has been previously DNATted) to B, a priority−100 flow matches

flags.force_snat_for_dnat == 1 && ip with an action ct_snat(B);.

• If a load balancer configured to skip snat has been applied to the Gateway router pipeline,

a priority−120 flow matches flags.skip_snat_for_lb == 1 && ip with an action next;.

• If the Gateway router in the OVN Northbound database has been configured to force

SNAT a packet (that has been previously load-balanced) using router IP (i.e

options:lb_force_snat_ip=router_ip), then for each logical router port P attached to the

Gateway router, a priority−110 flow matches flags.force_snat_for_lb == 1 && outport
== P

with an action ct_snat(R); where R is the IP configured on the router port. If R is an

IPv4 address then the match will also include ip4 and if it is an IPv6 address, then the

match will also include ip6.

If the logical router port P is configured with multiple IPv4 and multiple IPv6 addresses,

only the first IPv4 and first IPv6 address is considered.

• If the Gateway router in the OVN Northbound database has been configured to force

SNAT a packet (that has been previously load-balanced) to B, a priority−100 flow

matches flags.force_snat_for_lb == 1 && ip with an action ct_snat(B);.

• For each configuration in the OVN Northbound database, that asks to change the source

IP address of a packet from an IP address of A or to change the source IP address of a

OVN 21.06.1 ovn-northd 36

ovn-northd(8) OVN Manual ovn-northd(8)

packet that belongs to network A to B, a flow matches ip && ip4.src == A with an action

ct_snat(B);. The priority of the flow is calculated based on the mask of A, with matches

having larger masks getting higher priorities. If the NAT rule is of type dnat_and_snat

and has stateless=true in the options, then the action would be ip4/6.src= (B).

• If the NAT rule has allowed_ext_ips configured, then there is an additional match ip4.dst
== allowed_ext_ips . Similarly, for IPV6, match would be ip6.dst == allowed_ext_ips.

• If the NAT rule has exempted_ext_ips set, then there is an additional flow configured at

the priority + 1 of corresponding NAT rule. The flow matches if destination ip is an

exempted_ext_ip and the action is next; . This flow is used to bypass the ct_snat action

for a packet which is destinted to exempted_ext_ips.

• A priority−0 logical flow with match 1 has actions next;.

Egress Table 1: SNAT on Distributed Routers

• For each configuration in the OVN Northbound database, that asks to change the source

IP address of a packet from an IP address of A or to change the source IP address of a

packet that belongs to network A to B, a flow matches ip && ip4.src == A && outport
== GW, where GW is the logical router gateway port, with an action ct_snat(B);. The pri-

ority of the flow is calculated based on the mask of A, with matches having larger masks

getting higher priorities. If the NAT rule is of type dnat_and_snat and has stateless=true
in the options, then the action would be ip4/6.src= (B).

If the NAT rule cannot be handled in a distributed manner, then the flow above is only

programmed on the gateway chassis increasing flow priority by 128 in order to be run

first

If the NAT rule can be handled in a distributed manner, then there is an additional action

eth.src = EA;, where EA is the ethernet address associated with the IP address A in the

NAT rule. This allows upstream MAC learning to point to the correct chassis.

If the NAT rule has allowed_ext_ips configured, then there is an additional match ip4.dst
== allowed_ext_ips . Similarly, for IPV6, match would be ip6.dst == allowed_ext_ips.

If the NAT rule has exempted_ext_ips set, then there is an additional flow configured at

the priority + 1 of corresponding NAT rule. The flow matches if destination ip is an

exempted_ext_ip and the action is next; . This flow is used to bypass the ct_snat action

for a flow which is destinted to exempted_ext_ips.

• A priority−0 logical flow with match 1 has actions next;.

Egress Table 2: Egress Loopback

For distributed logical routers where one of the logical router ports specifies a gateway chassis.

While UNDNAT and SNAT processing have already occurred by this point, this traffic needs to be forced

through egress loopback on this distributed gateway port instance, in order for UNSNAT and DNAT pro-

cessing to be applied, and also for IP routing and ARP resolution after all of the NAT processing, so that the

packet can be forwarded to the destination.

This table has the following flows:

• For each NAT rule in the OVN Northbound database on a distributed router, a prior-

ity−100 logical flow with match ip4.dst == E && outport == GW && is_chassis_resi-
dent(P), where E is the external IP address specified in the NAT rule, GW is the logical

router distributed gateway port. For dnat_and_snat NAT rule, P is the logical port speci-

fied in the NAT rule. If logical_port column of NAT table is NOT set, then P is the chas-
sisredirect port of GW with the following actions:

clone {
ct_clear;
inport = outport;

OVN 21.06.1 ovn-northd 37

ovn-northd(8) OVN Manual ovn-northd(8)

outport = "";
flags = 0;
flags.loopback = 1;
reg0 = 0;
reg1 = 0;
...
reg9 = 0;
REGBIT_EGRESS_LOOPBACK = 1;
next(pipeline=ingress, table=0);

};

flags.loopback is set since in_port is unchanged and the packet may return back to that

port after NAT processing. REGBIT_EGRESS_LOOPBACK is set to indicate that

egress loopback has occurred, in order to skip the source IP address check against the

router address.

• A priority−0 logical flow with match 1 has actions next;.

Egress Table 3: Delivery

Packets that reach this table are ready for delivery. It contains:

• Priority−110 logical flows that match IP multicast packets on each enabled logical router

port and modify the Ethernet source address of the packets to the Ethernet address of the

port and then execute action output;.

• Priority−100 logical flows that match packets on each enabled logical router port, with

action output;.

OVN 21.06.1 ovn-northd 38

