
ovn-sb(5) Open vSwitch Manual ovn-sb(5)

NAME
ovn-sb − OVN_Southbound database schema

This database holds logical and physical configuration and state for the Open Virtual Network (OVN) sys-

tem to support virtual network abstraction. For an introduction to OVN, please see ovn−architecture(7).

The OVN Southbound database sits at the center of the OVN architecture. It is the one component that

speaks both southbound directly to all the hypervisors and gateways, via ovn−controller/ovn−con-
troller−vtep, and northbound to the Cloud Management System, via ovn−northd:

Database Structure
The OVN Southbound database contains classes of data with different properties, as described in the sec-

tions below.

Physical network

Physical network tables contain information about the chassis nodes in the system. This contains all the

information necessary to wire the overlay, such as IP addresses, supported tunnel types, and security keys.

The amount of physical network data is small (O(n) in the number of chassis) and it changes infrequently,

so it can be replicated to every chassis.

The Chassis and Encap tables are the physical network tables.

Logical Network

Logical network tables contain the topology of logical switches and routers, ACLs, firewall rules, and

ev erything needed to describe how packets traverse a logical network, represented as logical datapath flows

(see Logical Datapath Flows, below).

Logical network data may be large (O(n) in the number of logical ports, ACL rules, etc.). Thus, to improve

scaling, each chassis should receive only data related to logical networks in which that chassis participates.

The logical network data is ultimately controlled by the cloud management system (CMS) running north-

bound of OVN. That CMS determines the entire OVN logical configuration and therefore the logical net-

work data at any giv en time is a deterministic function of the CMS’s configuration, although that happens

indirectly via the OVN_Northbound database and ovn−northd.

Logical network data is likely to change more quickly than physical network data. This is especially true in

a container environment where containers are created and destroyed (and therefore added to and deleted

from logical switches) quickly.

The Logical_Flow, Multicast_Group, Address_Group, DHCP_Options, DHCPv6_Options, and DNS
tables contain logical network data.

Logical-physical bindings

These tables link logical and physical components. They show the current placement of logical components

(such as VMs and VIFs) onto chassis, and map logical entities to the values that represent them in tunnel

encapsulations.

These tables change frequently, at least every time a VM powers up or down or migrates, and especially

quickly in a container environment. The amount of data per VM (or VIF) is small.

Each chassis is authoritative about the VMs and VIFs that it hosts at any giv en time and can efficiently

flood that state to a central location, so the consistency needs are minimal.

The Port_Binding and Datapath_Binding tables contain binding data.

MAC bindings

The MAC_Binding table tracks the bindings from IP addresses to Ethernet addresses that are dynamically

discovered using ARP (for IPv4) and neighbor discovery (for IPv6). Usually, IP-to-MAC bindings for vir-

tual machines are statically populated into the Port_Binding table, so MAC_Binding is primarily used to

discover bindings on physical networks.

Open vSwitch 22.06.2 DB Schema 20.23.0 1

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Common Columns
Some tables contain a special column named external_ids. This column has the same form and purpose

each place that it appears, so we describe it here to save space later.

external_ids: map of string-string pairs

Ke y-value pairs for use by the software that manages the OVN Southbound database

rather than by ovn−controller/ovn−controller−vtep. In particular, ovn−northd can use

key-value pairs in this column to relate entities in the southbound database to higher-level

entities (such as entities in the OVN Northbound database). Individual key-value pairs in

this column may be documented in some cases to aid in understanding and troubleshoot-

ing, but the reader should not mistake such documentation as comprehensive.

TABLE SUMMARY
The following list summarizes the purpose of each of the tables in the OVN_Southbound database. Each

table is described in more detail on a later page.

Table Purpose

SB_Global Southbound configuration

Chassis Physical Network Hypervisor and Gateway Information

Chassis_Private
Chassis Private

Encap Encapsulation Types

Address_Set Address Sets

Port_Group Port Groups

Logical_Flow Logical Network Flows

Logical_DP_Group
Logical Datapath Groups

Multicast_Group
Logical Port Multicast Groups

Meter Meter entry

Meter_Band Band for meter entries

Datapath_Binding
Physical-Logical Datapath Bindings

Port_Binding Physical-Logical Port Bindings

MAC_Binding IP to MAC bindings

DHCP_Options
DHCP Options supported by native OVN DHCP

DHCPv6_Options
DHCPv6 Options supported by native OVN DHCPv6

Connection OVSDB client connections.

SSL SSL configuration.

DNS Native DNS resolution

RBAC_Role RBAC_Role configuration.

RBAC_Permission
RBAC_Permission configuration.

Gateway_Chassis
Gateway_Chassis configuration.

HA_Chassis HA_Chassis configuration.

HA_Chassis_Group
HA_Chassis_Group configuration.

Controller_Event
Controller Event table

IP_Multicast IP_Multicast configuration.

IGMP_Group IGMP_Group configuration.

Open vSwitch 22.06.2 DB Schema 20.23.0 2

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Service_Monitor
Service_Monitor configuration.

Load_Balancer Load_Balancer configuration.

BFD BFD configuration.

FDB Port to MAC bindings

Static_MAC_Binding
IP to MAC bindings

Open vSwitch 22.06.2 DB Schema 20.23.0 3

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

SB_Global TABLE
Southbound configuration for an OVN system. This table must have exactly one row.

Summary:
Status:

nb_cfg integer

Common Columns:

external_ids map of string-string pairs

options map of string-string pairs

Common options:

options map of string-string pairs

Options for configuring BFD:

options : bfd-min-rx optional string

options : bfd-decay-min-rx optional string

options : bfd-min-tx optional string

options : bfd-mult optional string

Options for configuring Load Balancers:

options : lb_hairpin_use_ct_mark optional string

Connection Options:

connections set of Connections

ssl optional SSL
Security Configurations:

ipsec boolean

Details:
Status:

This column allow a client to track the overall configuration state of the system.

nb_cfg: integer

Sequence number for the configuration. When a CMS or ovn−nbctl updates the northbound data-

base, it increments the nb_cfg column in the NB_Global table in the northbound database. In turn,

when ovn−northd updates the southbound database to bring it up to date with these changes, it

updates this column to the same value.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

options: map of string-string pairs

Common options:

options: map of string-string pairs

This column provides general key/value settings. The supported options are described individually

below.

Options for configuring BFD:

These options apply when ovn−controller configures BFD on tunnels interfaces.

options : bfd-min-rx: optional string

BFD option min−rx value to use when configuring BFD on tunnel interfaces.

options : bfd-decay-min-rx: optional string

BFD option decay−min−rx value to use when configuring BFD on tunnel interfaces.

options : bfd-min-tx: optional string

BFD option min−tx value to use when configuring BFD on tunnel interfaces.

Open vSwitch 22.06.2 DB Schema 20.23.0 4

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

options : bfd-mult: optional string

BFD option mult value to use when configuring BFD on tunnel interfaces.

Options for configuring Load Balancers:

These options apply when ovn−controller configures load balancer related flows.

options : lb_hairpin_use_ct_mark: optional string

By default this option is turned on (even if not present in the database) unless its value is explicitly

set to false. This value is automatically set to false by ovn−northd when action ct_lb_mark can-

not be used for new load balancer sessions and action ct_lb will be used instead. ovn−controller
then knows that it should check ct_label.natted to detect load balanced traffic.

Connection Options:

connections: set of Connections

Database clients to which the Open vSwitch database server should connect or on which it should

listen, along with options for how these connections should be configured. See the Connection ta-

ble for more information.

ssl: optional SSL
Global SSL configuration.

Security Configurations:

ipsec: boolean

Tunnel encryption configuration. If this column is set to be true, all OVN tunnels will be encrypted

with IPsec.

Open vSwitch 22.06.2 DB Schema 20.23.0 5

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Chassis TABLE
Each row in this table represents a hypervisor or gateway (a chassis) in the physical network. Each chassis,

via ovn−controller/ovn−controller−vtep, adds and updates its own row, and keeps a copy of the remaining

rows to determine how to reach other hypervisors.

When a chassis shuts down gracefully, it should remove its own row. (This is not critical because resources

hosted on the chassis are equally unreachable regardless of whether the row is present.) If a chassis shuts

down permanently without removing its row, some kind of manual or automatic cleanup is eventually

needed; we can devise a process for that as necessary.

Summary:
name string (must be unique within table)

hostname string

nb_cfg integer

other_config : ovn-bridge-mappings optional string

other_config : datapath-type optional string

other_config : iface-types optional string

other_config : ovn-cms-options optional string

other_config : is-interconn optional string

other_config : is-remote optional string

transport_zones set of strings

other_config : ovn-chassis-mac-mappings optional string

other_config : port-up-notif optional string

Common Columns:

external_ids map of string-string pairs

Encapsulation Configuration:

encaps set of 1 or more Encaps

Gateway Configuration:

vtep_logical_switches set of strings

Details:
name: string (must be unique within table)

OVN does not prescribe a particular format for chassis names. ovn-controller populates this col-

umn using external_ids:system-id in the Open_vSwitch database’s Open_vSwitch table. ovn-

controller-vtep populates this column with name in the hardware_vtep database’s Physi-
cal_Switch table.

hostname: string

The hostname of the chassis, if applicable. ovn-controller will populate this column with the host-

name of the host it is running on. ovn-controller-vtep will leave this column empty.

nb_cfg: integer

Deprecated. This column is replaced by the nb_cfg column of the Chassis_Private table.

other_config : ovn-bridge-mappings: optional string

ovn−controller populates this key with the set of bridge mappings it has been configured to use.

Other applications should treat this key as read-only. See ovn−controller(8) for more information.

other_config : datapath-type: optional string

ovn−controller populates this key with the datapath type configured in the datapath_type column

of the Open_vSwitch database’s Bridge table. Other applications should treat this key as read-

only. See ovn−controller(8) for more information.

other_config : iface-types: optional string

ovn−controller populates this key with the interface types configured in the iface_types column

of the Open_vSwitch database’s Open_vSwitch table. Other applications should treat this key as

read-only. See ovn−controller(8) for more information.

Open vSwitch 22.06.2 DB Schema 20.23.0 6

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

other_config : ovn-cms-options: optional string

ovn−controller populates this key with the set of options configured in the external_ids:ovn-cms-
options column of the Open_vSwitch database’s Open_vSwitch table. See ovn−controller(8) for

more information.

other_config : is-interconn: optional string

ovn−controller populates this key with the setting configured in the external_ids:ovn-is-inter-
conn column of the Open_vSwitch database’s Open_vSwitch table. If set to true, the chassis is

used as an interconnection gateway. See ovn−controller(8) for more information.

other_config : is-remote: optional string

ovn−ic set this key to true for remote interconnection gateway chassises learned from the intercon-

nection southbound database. See ovn−ic(8) for more information.

transport_zones: set of strings

ovn−controller populates this key with the transport zones configured in the external_ids:ovn-
transport-zones column of the Open_vSwitch database’s Open_vSwitch table. See ovn−con-
troller(8) for more information.

other_config : ovn-chassis-mac-mappings: optional string

ovn−controller populates this key with the set of options configured in the external_ids:ovn-
chassis-mac-mappings column of the Open_vSwitch database’s Open_vSwitch table. See

ovn−controller(8) for more information.

other_config : port-up-notif: optional string

ovn−controller populates this key with true when it supports Port_Binding.up.

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Encapsulation Configuration:

OVN uses encapsulation to transmit logical dataplane packets between chassis.

encaps: set of 1 or more Encaps

Points to supported encapsulation configurations to transmit logical dataplane packets to this chas-

sis. Each entry is a Encap record that describes the configuration.

Gateway Configuration:

A gateway is a chassis that forwards traffic between the OVN-managed part of a logical network and a

physical VLAN, extending a tunnel-based logical network into a physical network. Gateways are typically

dedicated nodes that do not host VMs and will be controlled by ovn−controller−vtep.

vtep_logical_switches: set of strings

Stores all VTEP logical switch names connected by this gateway chassis. The Port_Binding table

entry with options:vtep−physical−switch equal Chassis name, and options:vtep−logical−switch
value in Chassis vtep_logical_switches, will be associated with this Chassis.

Open vSwitch 22.06.2 DB Schema 20.23.0 7

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Chassis_Private TABLE
Each row in this table maintains per chassis private data that are accessed only by the owning chassis (write

only) and ovn-northd, not by any other chassis. These data are stored in this separate table instead of the

Chassis table for performance considerations: the rows in this table can be conditionally monitored by

chassises so that each chassis only get update notifications for its own row, to avoid unnecessary chassis

private data update flooding in a large scale deployment.

Summary:
name string (must be unique within table)

chassis optional weak reference to Chassis
nb_cfg integer

nb_cfg_timestamp integer

Common Columns:

external_ids map of string-string pairs

Details:
name: string (must be unique within table)

The name of the chassis that owns these chassis-private data.

chassis: optional weak reference to Chassis
The reference to Chassis table for the chassis that owns these chassis-private data.

nb_cfg: integer

Sequence number for the configuration. When ovn−controller updates the configuration of a chas-

sis from the contents of the southbound database, it copies nb_cfg from the SB_Global table into

this column.

nb_cfg_timestamp: integer

The timestamp when ovn−controller finishes processing the change corresponding to nb_cfg.

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 8

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Encap TABLE
The encaps column in the Chassis table refers to rows in this table to identify how OVN may transmit logi-

cal dataplane packets to this chassis. Each chassis, via ovn−controller(8) or ovn−controller−vtep(8), adds

and updates its own rows and keeps a copy of the remaining rows to determine how to reach other chassis.

Summary:
type string, one of geneve, stt, or vxlan
options map of string-string pairs

options : csum optional string, either true or false
options : dst_port optional string, containing an integer

ip string

chassis_name string

Details:
type: string, one of geneve, stt, or vxlan

The encapsulation to use to transmit packets to this chassis. Hypervisors must use either geneve or

stt. Gateways may use vxlan, geneve, or stt.

options: map of string-string pairs

Options for configuring the encapsulation, which may be type specific.

options : csum: optional string, either true or false
csum indicates whether this chassis can transmit and receive packets that include checksums with

reasonable performance. It hints to senders transmitting data to this chassis that they should use

checksums to protect OVN metadata. ovn−controller populates this key with the value defined in

external_ids:ovn-encap-csum column of the Open_vSwitch database’s Open_vSwitch table.

Other applications should treat this key as read-only. See ovn−controller(8) for more information.

In terms of performance, checksumming actually significantly increases throughput in most com-

mon cases when running on Linux based hosts without NICs supporting encapsulation hardware

offload (around 60% for bulk traffic). The reason is that generally all NICs are capable of offload-

ing transmitted and received TCP/UDP checksums (viewed as ordinary data packets and not as

tunnels). The benefit comes on the receive side where the validated outer checksum can be used to

additionally validate an inner checksum (such as TCP), which in turn allows aggregation of pack-

ets to be more efficiently handled by the rest of the stack.

Not all devices see such a benefit. The most notable exception is hardware VTEPs. These devices

are designed to not buffer entire packets in their switching engines and are therefore unable to effi-

ciently compute or validate full packet checksums. In addition certain versions of the Linux kernel

are not able to fully take advantage of encapsulation NIC offloads in the presence of checksums.

(This is actually a pretty narrow corner case though: earlier versions of Linux don’t support encap-

sulation offloads at all and later versions support both offloads and checksums well.)

csum defaults to false for hardware VTEPs and true for all other cases.

This option applies to geneve and vxlan encapsulations.

options : dst_port: optional string, containing an integer

If set, overrides the UDP (for geneve and vxlan) or TCP (for stt) destination port.

ip: string

The IPv4 address of the encapsulation tunnel endpoint.

chassis_name: string

The name of the chassis that created this encap.

Open vSwitch 22.06.2 DB Schema 20.23.0 9

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Address_Set TABLE
This table contains address sets synced from the Address_Set table in the OVN_Northbound database and

address sets generated from the Port_Group table in the OVN_Northbound database.

See the documentation for the Address_Set table and Port_Group table in the OVN_Northbound data-

base for details.

Summary:
name string (must be unique within table)

addresses set of strings

Details:
name: string (must be unique within table)

addresses: set of strings

Open vSwitch 22.06.2 DB Schema 20.23.0 10

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Port_Group TABLE
This table contains names for the logical switch ports in the OVN_Northbound database that belongs to

the same group that is defined in Port_Group in the OVN_Northbound database.

Summary:
name string (must be unique within table)

ports set of strings

Details:
name: string (must be unique within table)

ports: set of strings

Open vSwitch 22.06.2 DB Schema 20.23.0 11

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Logical_Flow TABLE
Each row in this table represents one logical flow. ovn−northd populates this table with logical flows that

implement the L2 and L3 topologies specified in the OVN_Northbound database. Each hypervisor, via

ovn−controller, translates the logical flows into OpenFlow flows specific to its hypervisor and installs them

into Open vSwitch.

Logical flows are expressed in an OVN-specific format, described here. A logical datapath flow is much

like an OpenFlow flow, except that the flows are written in terms of logical ports and logical datapaths

instead of physical ports and physical datapaths. Translation between logical and physical flows helps to

ensure isolation between logical datapaths. (The logical flow abstraction also allows the OVN centralized

components to do less work, since they do not have to separately compute and push out physical flows to

each chassis.)

The default action when no flow matches is to drop packets.

Architectural Logical Life Cycle of a Packet

This following description focuses on the life cycle of a packet through a logical datapath, ignoring physi-

cal details of the implementation. Please refer to Architectural Physical Life Cycle of a Packet in

ovn−architecture(7) for the physical information.

The description here is written as if OVN itself executes these steps, but in fact OVN (that is, ovn−con-
troller) programs Open vSwitch, via OpenFlow and OVSDB, to execute them on its behalf.

At a high level, OVN passes each packet through the logical datapath’s logical ingress pipeline, which may

output the packet to one or more logical port or logical multicast groups. For each such logical output port,

OVN passes the packet through the datapath’s logical egress pipeline, which may either drop the packet or

deliver it to the destination. Between the two pipelines, outputs to logical multicast groups are expanded

into logical ports, so that the egress pipeline only processes a single logical output port at a time. Between

the two pipelines is also where, when necessary, OVN encapsulates a packet in a tunnel (or tunnels) to

transmit to remote hypervisors.

In more detail, to start, OVN searches the Logical_Flow table for a row with correct logical_datapath or a

logical_dp_group, a pipeline of ingress, a table_id of 0, and a match that is true for the packet. If none is

found, OVN drops the packet. If OVN finds more than one, it chooses the match with the highest priority.

Then OVN executes each of the actions specified in the row’s actions column, in the order specified. Some

actions, such as those to modify packet headers, require no further details. The next and output actions are

special.

The next action causes the above process to be repeated recursively, except that OVN searches for table_id
of 1 instead of 0. Similarly, any next action in a row found in that table would cause a further search for a

table_id of 2, and so on. When recursive processing completes, flow control returns to the action following

next.

The output action also introduces recursion. Its effect depends on the current value of the outport field.

Suppose outport designates a logical port. First, OVN compares inport to outport; if they are equal, it

treats the output as a no-op by default. In the common case, where they are different, the packet enters the

egress pipeline. This transition to the egress pipeline discards register data, e.g. reg0 ... reg9 and connection

tracking state, to achieve uniform behavior regardless of whether the egress pipeline is on a different hyper-

visor (because registers aren’t preserve across tunnel encapsulation).

To execute the egress pipeline, OVN again searches the Logical_Flow table for a row with correct logi-
cal_datapath or a logical_dp_group, a table_id of 0, a match that is true for the packet, but now looking

for a pipeline of egress. If no matching row is found, the output becomes a no-op. Otherwise, OVN exe-

cutes the actions for the matching flow (which is chosen from multiple, if necessary, as already described).

In the egress pipeline, the next action acts as already described, except that it, of course, searches for

egress flows. The output action, however, now directly outputs the packet to the output port (which is now

fixed, because outport is read-only within the egress pipeline).

The description earlier assumed that outport referred to a logical port. If it instead designates a logical

multicast group, then the description above still applies, with the addition of fan-out from the logical

Open vSwitch 22.06.2 DB Schema 20.23.0 12

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

multicast group to each logical port in the group. For each member of the group, OVN executes the logical

pipeline as described, with the logical output port replaced by the group member.

Pipeline Stages

ovn−northd populates the Logical_Flow table with the logical flows described in detail in ovn−northd(8).

Summary:
logical_datapath optional Datapath_Binding
logical_dp_group optional Logical_DP_Group
pipeline string, either egress or ingress
table_id integer, in range 0 to 32

priority integer, in range 0 to 65,535

match string

actions string

tags map of string-string pairs

controller_meter optional string

external_ids : stage-name optional string

external_ids : stage-hint optional string, containing an uuid

external_ids : source optional string

Common Columns:

external_ids map of string-string pairs

Details:
logical_datapath: optional Datapath_Binding

The logical datapath to which the logical flow belongs.

logical_dp_group: optional Logical_DP_Group
The group of logical datapaths to which the logical flow belongs. This means that the same logical

flow belongs to all datapaths in a group.

pipeline: string, either egress or ingress
The primary flows used for deciding on a packet’s destination are the ingress flows. The egress
flows implement ACLs. See Logical Life Cycle of a Packet, above, for details.

table_id: integer, in range 0 to 32

The stage in the logical pipeline, analogous to an OpenFlow table number.

priority: integer, in range 0 to 65,535

The flow’s priority. Flows with numerically higher priority take precedence over those with lower.

If two logical datapath flows with the same priority both match, then the one actually applied to

the packet is undefined.

match: string

A matching expression. OVN provides a superset of OpenFlow matching capabilities, using a syn-

tax similar to Boolean expressions in a programming language.

The most important components of match expression are comparisons between symbols and con-

stants, e.g. ip4.dst == 192.168.0.1, ip.proto == 6, arp.op == 1, eth.type == 0x800. The logical

AND operator && and logical OR operator || can combine comparisons into a larger expression.

Matching expressions also support parentheses for grouping, the logical NOT prefix operator !,
and literals 0 and 1 to express ‘‘false’’ or ‘‘true,’’ respectively. The latter is useful by itself as a

catch-all expression that matches every packet.

Match expressions also support a kind of function syntax. The following functions are supported:

is_chassis_resident(lport)
Evaluates to true on a chassis on which logical port lport (a quoted string) resides, and to

false elsewhere. This function was introduced in OVN 2.7.

Symbols

Open vSwitch 22.06.2 DB Schema 20.23.0 13

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Type. Symbols have integer or string type. Integer symbols have a width in bits.

Kinds. There are three kinds of symbols:

• Fields. A field symbol represents a packet header or metadata field. For example, a field

named vlan.tci might represent the VLAN TCI field in a packet.

A field symbol can have integer or string type. Integer fields can be nominal or ordinal

(see Level of Measurement, below).

• Subfields. A subfield represents a subset of bits from a larger field. For example, a field

vlan.vid might be defined as an alias for vlan.tci[0..11]. Subfields are provided for syn-

tactic convenience, because it is always possible to instead refer to a subset of bits from a

field directly.

Only ordinal fields (see Level of Measurement, below) may have subfields. Subfields are

always ordinal.

• Predicates. A predicate is shorthand for a Boolean expression. Predicates may be used

much like 1-bit fields. For example, ip4 might expand to eth.type == 0x800. Predicates

are provided for syntactic convenience, because it is always possible to instead specify

the underlying expression directly.

A predicate whose expansion refers to any nominal field or predicate (see Level of Mea-
surement, below) is nominal; other predicates have Boolean level of measurement.

Level of Measurement. See http://en.wikipedia.org/wiki/Level_of_measurement for the statistical

concept on which this classification is based. There are three levels:

• Ordinal. In statistics, ordinal values can be ordered on a scale. OVN considers a field (or

subfield) to be ordinal if its bits can be examined individually. This is true for the Open-

Flow fields that OpenFlow or Open vSwitch makes ‘‘maskable.’’

Any use of a ordinal field may specify a single bit or a range of bits, e.g. vlan.tci[13..15]
refers to the PCP field within the VLAN TCI, and eth.dst[40] refers to the multicast bit in

the Ethernet destination address.

OVN supports all the usual arithmetic relations (==, !=, <, <=, >, and >=) on ordinal

fields and their subfields, because OVN can implement these in OpenFlow and Open

vSwitch as collections of bitwise tests.

• Nominal. In statistics, nominal values cannot be usefully compared except for equality.

This is true of OpenFlow port numbers, Ethernet types, and IP protocols are examples: all

of these are just identifiers assigned arbitrarily with no deeper meaning. In OpenFlow and

Open vSwitch, bits in these fields generally aren’t individually addressable.

OVN only supports arithmetic tests for equality on nominal fields, because OpenFlow

and Open vSwitch provide no way for a flow to efficiently implement other comparisons

on them. (A test for inequality can be sort of built out of two flows with different priori-

ties, but OVN matching expressions always generate flows with a single priority.)

String fields are always nominal.

• Boolean. A nominal field that has only two values, 0 and 1, is somewhat exceptional,

since it is easy to support both equality and inequality tests on such a field: either one can

be implemented as a test for 0 or 1.

Only predicates (see above) hav e a Boolean level of measurement.

This isn’t a standard level of measurement.

Prerequisites. Any symbol can have prerequisites, which are additional condition implied by the

use of the symbol. For example, For example, icmp4.type symbol might have prerequisite icmp4,

which would cause an expression icmp4.type == 0 to be interpreted as icmp4.type == 0 &&
icmp4, which would in turn expand to icmp4.type == 0 && eth.type == 0x800 && ip4.proto ==

Open vSwitch 22.06.2 DB Schema 20.23.0 14

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

1 (assuming icmp4 is a predicate defined as suggested under Types above).

Relational operators

All of the standard relational operators ==, !=, <, <=, >, and >= are supported. Nominal fields sup-

port only == and !=, and only in a positive sense when outer ! are taken into account, e.g. given

string field inport, inport == "eth0" and !(inport != "eth0") are acceptable, but not inport !=
"eth0".

The implementation of == (or != when it is negated), is more efficient than that of the other rela-

tional operators.

Constants

Integer constants may be expressed in decimal, hexadecimal prefixed by 0x, or as dotted-quad

IPv4 addresses, IPv6 addresses in their standard forms, or Ethernet addresses as colon-separated

hex digits. A constant in any of these forms may be followed by a slash and a second constant (the

mask) in the same form, to form a masked constant. IPv4 and IPv6 masks may be given as inte-

gers, to express CIDR prefixes.

String constants have the same syntax as quoted strings in JSON (thus, they are Unicode strings).

Some operators support sets of constants written inside curly braces { ... }. Commas between ele-

ments of a set, and after the last elements, are optional. With ==, ‘‘field == { constant1, constant2,
... }’’ is syntactic sugar for ‘‘field == constant1 || field == constant2 || Similarly, ‘‘field != { con-

stant1, constant2, ... }’’ is equivalent to ‘‘field != constant1 && field != constant2 && ...’’.

You may refer to a set of IPv4, IPv6, or MAC addresses stored in the Address_Set table by its

name. An Address_Set with a name of set1 can be referred to as $set1.

You may refer to a group of logical switch ports stored in the Port_Group table by its name. An

Port_Group with a name of port_group1 can be referred to as @port_group1.

Additionally, you may refer to the set of addresses belonging to a group of logical switch ports

stored in the Port_Group table by its name followed by a suffix ’_ip4’/’_ip6’. The IPv4 address

set of a Port_Group with a name of port_group1 can be referred to as $port_group1_ip4, and

the IPv6 address set of the same Port_Group can be referred to as $port_group1_ip6

Miscellaneous

Comparisons may name the symbol or the constant first, e.g. tcp.src == 80 and 80 == tcp.src are

both acceptable.

Tests for a range may be expressed using a syntax like 1024 <= tcp.src <= 49151, which is equiv-

alent to 1024 <= tcp.src && tcp.src <= 49151.

For a one-bit field or predicate, a mention of its name is equivalent to symobl == 1, e.g.

vlan.present is equivalent to vlan.present == 1. The same is true for one-bit subfields, e.g.

vlan.tci[12]. There is no technical limitation to implementing the same for ordinal fields of all

widths, but the implementation is expensive enough that the syntax parser requires writing an

explicit comparison against zero to make mistakes less likely, e.g. in tcp.src != 0 the comparison

against 0 is required.

Operator precedence is as shown below, from highest to lowest. There are two exceptions where

parentheses are required even though the table would suggest that they are not: && and || require

parentheses when used together, and ! requires parentheses when applied to a relational expres-

sion. Thus, in (eth.type == 0x800 || eth.type == 0x86dd) && ip.proto == 6 or !(arp.op == 1),
the parentheses are mandatory.

• ()

• == != < <= > >=

• !

Open vSwitch 22.06.2 DB Schema 20.23.0 15

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

• && ||

Comments may be introduced by //, which extends to the next new-line. Comments within a line

may be bracketed by /* and */. Multiline comments are not supported.

Symbols

Most of the symbols below hav e integer type. Only inport and outport have string type. inport
names a logical port. Thus, its value is a logical_port name from the Port_Binding table. outport
may name a logical port, as inport, or a logical multicast group defined in the Multicast_Group
table. For both symbols, only names within the flow’s logical datapath may be used.

The regX symbols are 32-bit integers. The xxregX symbols are 128-bit integers, which overlay

four of the 32-bit registers: xxreg0 overlays reg0 through reg3, with reg0 supplying the most-sig-

nificant bits of xxreg0 and reg3 the least-significant. xxreg1 similarly overlays reg4 through reg7.

• reg0...reg9

• xxreg0 xxreg1

• inport outport

• flags.loopback

• pkt.mark

• eth.src eth.dst eth.type

• vlan.tci vlan.vid vlan.pcp vlan.present

• ip.proto ip.dscp ip.ecn ip.ttl ip.frag

• ip4.src ip4.dst

• ip6.src ip6.dst ip6.label

• arp.op arp.spa arp.tpa arp.sha arp.tha

• tcp.src tcp.dst tcp.flags

• udp.src udp.dst

• sctp.src sctp.dst

• icmp4.type icmp4.code

• icmp6.type icmp6.code

• nd.target nd.sll nd.tll

• ct_mark ct_label

• ct_state, which has several Boolean subfields. The ct_next action initializes the follow-

ing subfields:

• ct.trk: Always set to true by ct_next to indicate that connection tracking has

taken place. All other ct subfields have ct.trk as a prerequisite.

• ct.new: True for a new flow

• ct.est: True for an established flow

• ct.rel: True for a related flow

• ct.rpl: True for a reply flow

• ct.inv: True for a connection entry in a bad state

The ct_dnat, ct_snat, and ct_lb actions initialize the following subfields:

• ct.dnat: True for a packet whose destination IP address has been changed.

• ct.snat: True for a packet whose source IP address has been changed.

Open vSwitch 22.06.2 DB Schema 20.23.0 16

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

The following predicates are supported:

• eth.bcast expands to eth.dst == ff:ff:ff:ff:ff:ff

• eth.mcast expands to eth.dst[40]

• vlan.present expands to vlan.tci[12]

• ip4 expands to eth.type == 0x800

• ip4.src_mcast expands to ip4.src[28..31] == 0xe

• ip4.mcast expands to ip4.dst[28..31] == 0xe

• ip6 expands to eth.type == 0x86dd

• ip expands to ip4 || ip6

• icmp4 expands to ip4 && ip.proto == 1

• icmp6 expands to ip6 && ip.proto == 58

• icmp expands to icmp4 || icmp6

• ip.is_frag expands to ip.frag[0]

• ip.later_frag expands to ip.frag[1]

• ip.first_frag expands to ip.is_frag && !ip.later_frag

• arp expands to eth.type == 0x806

• nd expands to icmp6.type == {135, 136} && icmp6.code == 0 && ip.ttl == 255

• nd_ns expands to icmp6.type == 135 && icmp6.code == 0 && ip.ttl == 255

• nd_na expands to icmp6.type == 136 && icmp6.code == 0 && ip.ttl == 255

• nd_rs expands to icmp6.type == 133 && icmp6.code == 0 && ip.ttl == 255

• nd_ra expands to icmp6.type == 134 && icmp6.code == 0 && ip.ttl == 255

• tcp expands to ip.proto == 6

• udp expands to ip.proto == 17

• sctp expands to ip.proto == 132

actions: string

Logical datapath actions, to be executed when the logical flow represented by this row is the high-

est-priority match.

Actions share lexical syntax with the match column. An empty set of actions (or one that contains

just white space or comments), or a set of actions that consists of just drop;, causes the matched

packets to be dropped. Otherwise, the column should contain a sequence of actions, each termi-

nated by a semicolon.

The following actions are defined:

output;
In the ingress pipeline, this action executes the egress pipeline as a subroutine. If outport
names a logical port, the egress pipeline executes once; if it is a multicast group, the

egress pipeline runs once for each logical port in the group.

In the egress pipeline, this action performs the actual output to the outport logical port.

(In the egress pipeline, outport never names a multicast group.)

By default, output to the input port is implicitly dropped, that is, output becomes a no-op

if outport == inport. Occasionally it may be useful to override this behavior, e.g. to send

an ARP reply to an ARP request; to do so, use flags.loopback = 1 to allow the packet to

"hair-pin" back to the input port.

Open vSwitch 22.06.2 DB Schema 20.23.0 17

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

next;
next(table);
next(pipeline=pipeline, table=table);

Executes the given logical datapath table in pipeline as a subroutine. The default table is

just after the current one. If pipeline is specified, it may be ingress or egress; the default

pipeline is the one currently executing. Actions in the both ingress and egress pipeline

can use next to jump across the other pipeline. Actions in the ingress pipeline should use

next to jump into the specific table of egress pipeline only if it is certain that the packets

are local and not tunnelled and wants to skip certain stages in the packet processing.

field = constant;
Sets data or metadata field field to constant value constant, e.g. outport = "vif0"; to set

the logical output port. To set only a subset of bits in a field, specify a subfield for field or

a masked constant, e.g. one may use vlan.pcp[2] = 1; or vlan.pcp = 4/4; to set the most

significant bit of the VLAN PCP.

Assigning to a field with prerequisites implicitly adds those prerequisites to match; thus,

for example, a flow that sets tcp.dst applies only to TCP flows, regardless of whether its

match mentions any TCP field.

Not all fields are modifiable (e.g. eth.type and ip.proto are read-only), and not all modi-

fiable fields may be partially modified (e.g. ip.ttl must assigned as a whole). The outport
field is modifiable in the ingress pipeline but not in the egress pipeline.

ovn_field = constant;
Sets OVN field ovn_field to constant value constant.

OVN supports setting the values of certain fields which are not yet supported in Open-

Flow to set or modify them.

Below are the supported OVN fields:

• icmp4.frag_mtu icmp6.frag_mtu

This field sets the low-order 16 bits of the ICMP{4,6} header field that is

labelled "unused" in the ICMP specification as defined in the RFC 1191 with the

value specified in constant.

Eg. icmp4.frag_mtu = 1500;

field1 = field2;
Sets data or metadata field field1 to the value of data or metadata field field2, e.g. reg0 =
ip4.src; copies ip4.src into reg0. To modify only a subset of a field’s bits, specify a sub-

field for field1 or field2 or both, e.g. vlan.pcp = reg0[0..2]; copies the least-significant

bits of reg0 into the VLAN PCP.

field1 and field2 must be the same type, either both string or both integer fields. If they are

both integer fields, they must have the same width.

If field1 or field2 has prerequisites, they are added implicitly to match. It is possible to

write an assignment with contradictory prerequisites, such as ip4.src = ip6.src[0..31];,
but the contradiction means that a logical flow with such an assignment will never be

matched.

field1 <−> field2;
Similar to field1 = field2; except that the two values are exchanged instead of copied.

Both field1 and field2 must modifiable.

push(field);
Push the value of field to the stack top.

Open vSwitch 22.06.2 DB Schema 20.23.0 18

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

pop(field);
Pop the stack top and store the value to field, which must be modifiable.

ip.ttl−−;
Decrements the IPv4 or IPv6 TTL. If this would make the TTL zero or negative, then

processing of the packet halts; no further actions are processed. (To properly handle such

cases, a higher-priority flow should match on ip.ttl == {0, 1};.)

Prerequisite: ip

ct_next;
Apply connection tracking to the flow, initializing ct_state for matching in later tables.

Automatically moves on to the next table, as if followed by next.

As a side effect, IP fragments will be reassembled for matching. If a fragmented packet is

output, then it will be sent with any overlapping fragments squashed. The connection

tracking state is scoped by the logical port when the action is used in a flow for a logical

switch, so overlapping addresses may be used. To allow traffic related to the matched

flow, execute ct_commit . Connection tracking state is scoped by the logical topology

when the action is used in a flow for a router.

It is possible to have actions follow ct_next, but they will not have access to any of its

side-effects and is not generally useful.

ct_commit { };
ct_commit { ct_mark=value[/mask]; };
ct_commit { ct_label=value[/mask]; };
ct_commit { ct_mark=value[/mask]; ct_label=value[/mask]; };

Commit the flow to the connection tracking entry associated with it by a previous call to

ct_next. When ct_mark=value[/mask] and/or ct_label=value[/mask] are supplied,

ct_mark and/or ct_label will be set to the values indicated by value[/mask] on the con-

nection tracking entry. ct_mark is a 32-bit field. ct_label is a 128-bit field. The

value[/mask] should be specified in hex string if more than 64bits are to be used. Regis-

ters and other named fields can be used for value. ct_mark and ct_label may be sub-

addressed in order to have specific bits set.

Note that if you want processing to continue in the next table, you must execute the next
action after ct_commit. You may also leave out next which will commit connection

tracking state, and then drop the packet. This could be useful for setting ct_mark on a

connection tracking entry before dropping a packet, for example.

ct_dnat;
ct_dnat(IP);

ct_dnat sends the packet through the DNAT zone in connection tracking table to unD-

NAT any packet that was DNAT ed in the opposite direction. The packet is then automati-

cally sent to to the next tables as if followed by next; action. The next tables will see the

changes in the packet caused by the connection tracker.

ct_dnat(IP) sends the packet through the DNAT zone to change the destination IP

address of the packet to the one provided inside the parentheses and commits the connec-

tion. The packet is then automatically sent to the next tables as if followed by next;
action. The next tables will see the changes in the packet caused by the connection

tracker.

ct_snat;
ct_snat(IP);

ct_snat sends the packet through the SNAT zone to unSNAT any packet that was SNAT ed

in the opposite direction. The packet is automatically sent to the next tables as if followed

by the next; action. The next tables will see the changes in the packet caused by the con-

nection tracker.

Open vSwitch 22.06.2 DB Schema 20.23.0 19

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

ct_snat(IP) sends the packet through the SNAT zone to change the source IP address of

the packet to the one provided inside the parenthesis and commits the connection. The

packet is then automatically sent to the next tables as if followed by next; action. The

next tables will see the changes in the packet caused by the connection tracker.

ct_dnat_in_czone;
ct_dnat_in_czone(IP);

ct_dnat_in_czone sends the packet through the common NAT zone (used for both DNAT

and SNAT) in connection tracking table to unDNAT any packet that was DNAT ed in the

opposite direction. The packet is then automatically sent to to the next tables as if fol-

lowed by next; action. The next tables will see the changes in the packet caused by the

connection tracker.

ct_dnat_in_czone(IP) sends the packet through the common NAT zone to change the

destination IP address of the packet to the one provided inside the parentheses and com-

mits the connection. The packet is then automatically sent to the next tables as if followed

by next; action. The next tables will see the changes in the packet caused by the connec-

tion tracker.

ct_snat_in_czone;
ct_snat_in_czone(IP);

ct_snat_in_czone sends the packet through the common NAT zone to unSNAT any

packet that was SNAT ed in the opposite direction. The packet is automatically sent to the

next tables as if followed by the next; action. The next tables will see the changes in the

packet caused by the connection tracker.

ct_snat_in_czone(IP) sends the packet\ through the common NAT zone to change the

source IP address of the packet to the one provided inside the parenthesis and commits

the connection. The packet is then automatically sent to the next tables as if followed by

next; action. The next tables will see the changes in the packet caused by the connection

tracker.

ct_clear;
Clears connection tracking state.

clone { action; ... };
Makes a copy of the packet being processed and executes each action on the copy.

Actions following the clone action, if any, apply to the original, unmodified packet. This

can be used as a way to ‘‘save and restore’’ the packet around a set of actions that may

modify it and should not persist.

arp { action; ... };
Temporarily replaces the IPv4 packet being processed by an ARP packet and executes

each nested action on the ARP packet. Actions following the arp action, if any, apply to

the original, unmodified packet.

The ARP packet that this action operates on is initialized based on the IPv4 packet being

processed, as follows. These are default values that the nested actions will probably want

to change:

• eth.src unchanged

• eth.dst unchanged

• eth.type = 0x0806

• arp.op = 1 (ARP request)

• arp.sha copied from eth.src

• arp.spa copied from ip4.src

Open vSwitch 22.06.2 DB Schema 20.23.0 20

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

• arp.tha = 00:00:00:00:00:00

• arp.tpa copied from ip4.dst

The ARP packet has the same VLAN header, if any, as the IP packet it replaces.

Prerequisite: ip4

get_arp(P, A);
Parameters: logical port string field P, 32-bit IP address field A.

Looks up A in P’s mac binding table. If an entry is found, stores its Ethernet address in

eth.dst, otherwise stores 00:00:00:00:00:00 in eth.dst.

Example: get_arp(outport, ip4.dst);

put_arp(P, A, E);
Parameters: logical port string field P, 32-bit IP address field A, 48-bit Ethernet address

field E.

Adds or updates the entry for IP address A in logical port P’s mac binding table, setting

its Ethernet address to E.

Example: put_arp(inport, arp.spa, arp.sha);

R = lookup_arp(P, A, M);
Parameters: logical port string field P, 32-bit IP address field A, 48-bit MAC address

field M.

Result: stored to a 1-bit subfield R.

Looks up A and M in P’s mac binding table. If an entry is found, stores 1 in the 1-bit sub-

field R, else 0.

Example: reg0[0] = lookup_arp(inport, arp.spa, arp.sha);

R = lookup_arp_ip(P, A);
Parameters: logical port string field P, 32-bit IP address field A.

Result: stored to a 1-bit subfield R.

Looks up A in P’s mac binding table. If an entry is found, stores 1 in the 1-bit subfield R,

else 0.

Example: reg0[0] = lookup_arp_ip(inport, arp.spa);

P = get_fdb(A);
Parameters:48-bit MAC address field A.

Looks up A in fdb table. If an entry is found, stores the logical port key to the out parame-

ter P.

Example: outport = get_fdb(eth.src);

put_fdb(P, A);
Parameters: logical port string field P, 48-bit MAC address field A.

Adds or updates the entry for Ethernet address A in fdb table, setting its logical port key

to P.

Example: put_fdb(inport, arp.spa);

R = lookup_fdb(P, A);
Parameters: 48-bit MAC address field M, logical port string field P.

Result: stored to a 1-bit subfield R.

Looks up A in fdb table. If an entry is found and the the logical port key is P, P, stores 1
in the 1-bit subfield R, else 0.

Open vSwitch 22.06.2 DB Schema 20.23.0 21

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Example: reg0[0] = lookup_fdb(inport, eth.src);

nd_ns { action; ... };
Temporarily replaces the IPv6 packet being processed by an IPv6 Neighbor Solicitation

packet and executes each nested action on the IPv6 NS packet. Actions following the

nd_ns action, if any, apply to the original, unmodified packet.

The IPv6 NS packet that this action operates on is initialized based on the IPv6 packet

being processed, as follows. These are default values that the nested actions will probably

want to change:

• eth.src unchanged

• eth.dst set to IPv6 multicast MAC address

• eth.type = 0x86dd

• ip6.src copied from ip6.src

• ip6.dst set to IPv6 Solicited-Node multicast address

• icmp6.type = 135 (Neighbor Solicitation)

• nd.target copied from ip6.dst

The IPv6 NS packet has the same VLAN header, if any, as the IP packet it replaces.

Prerequisite: ip6

nd_na { action; ... };
Temporarily replaces the IPv6 neighbor solicitation packet being processed by an IPv6

neighbor advertisement (NA) packet and executes each nested action on the NA packet.

Actions following the nd_na action, if any, apply to the original, unmodified packet.

The NA packet that this action operates on is initialized based on the IPv6 packet being

processed, as follows. These are default values that the nested actions will probably want

to change:

• eth.dst exchanged with eth.src

• eth.type = 0x86dd

• ip6.dst copied from ip6.src

• ip6.src copied from nd.target

• icmp6.type = 136 (Neighbor Advertisement)

• nd.target unchanged

• nd.sll = 00:00:00:00:00:00

• nd.tll copied from eth.dst

The ND packet has the same VLAN header, if any, as the IPv6 packet it replaces.

Prerequisite: nd_ns

nd_na_router { action; ... };
Temporarily replaces the IPv6 neighbor solicitation packet being processed by an IPv6

neighbor advertisement (NA) packet, sets ND_NSO_ROUTER in the RSO flags and exe-

cutes each nested action on the NA packet. Actions following the nd_na_router action,

if any, apply to the original, unmodified packet.

The NA packet that this action operates on is initialized based on the IPv6 packet being

processed, as follows. These are default values that the nested actions will probably want

to change:

• eth.dst exchanged with eth.src

Open vSwitch 22.06.2 DB Schema 20.23.0 22

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

• eth.type = 0x86dd

• ip6.dst copied from ip6.src

• ip6.src copied from nd.target

• icmp6.type = 136 (Neighbor Advertisement)

• nd.target unchanged

• nd.sll = 00:00:00:00:00:00

• nd.tll copied from eth.dst

The ND packet has the same VLAN header, if any, as the IPv6 packet it replaces.

Prerequisite: nd_ns

get_nd(P, A);
Parameters: logical port string field P, 128-bit IPv6 address field A.

Looks up A in P’s mac binding table. If an entry is found, stores its Ethernet address in

eth.dst, otherwise stores 00:00:00:00:00:00 in eth.dst.

Example: get_nd(outport, ip6.dst);

put_nd(P, A, E);
Parameters: logical port string field P, 128-bit IPv6 address field A, 48-bit Ethernet

address field E.

Adds or updates the entry for IPv6 address A in logical port P’s mac binding table, setting

its Ethernet address to E.

Example: put_nd(inport, nd.target, nd.tll);

R = lookup_nd(P, A, M);
Parameters: logical port string field P, 128-bit IP address field A, 48-bit MAC address

field M.

Result: stored to a 1-bit subfield R.

Looks up A and M in P’s mac binding table. If an entry is found, stores 1 in the 1-bit sub-

field R, else 0.

Example: reg0[0] = lookup_nd(inport, ip6.src, eth.src);

R = lookup_nd_ip(P, A);
Parameters: logical port string field P, 128-bit IP address field A.

Result: stored to a 1-bit subfield R.

Looks up A in P’s mac binding table. If an entry is found, stores 1 in the 1-bit subfield R,

else 0.

Example: reg0[0] = lookup_nd_ip(inport, ip6.src);

R = put_dhcp_opts(D1 = V1, D2 = V2, ..., Dn = Vn);
Parameters: one or more DHCP option/value pairs, which must include an offerip
option (with code 0).

Result: stored to a 1-bit subfield R.

Valid only in the ingress pipeline.

When this action is applied to a DHCP request packet (DHCPDISCOVER or DHCPRE-

QUEST), it changes the packet into a DHCP reply (DHCPOFFER or DHCPACK, respec-

tively), replaces the options by those specified as parameters, and stores 1 in R.

When this action is applied to a non-DHCP packet or a DHCP packet that is not

DHCPDISCOVER or DHCPREQUEST, it leaves the packet unchanged and stores 0 in R.

Open vSwitch 22.06.2 DB Schema 20.23.0 23

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

The contents of the DHCP_Option table control the DHCP option names and values that

this action supports.

Example: reg0[0] = put_dhcp_opts(offerip = 10.0.0.2, router = 10.0.0.1, netmask =
255.255.255.0, dns_server = {8.8.8.8, 7.7.7.7});

R = put_dhcpv6_opts(D1 = V1, D2 = V2, ..., Dn = Vn);
Parameters: one or more DHCPv6 option/value pairs.

Result: stored to a 1-bit subfield R.

Valid only in the ingress pipeline.

When this action is applied to a DHCPv6 request packet, it changes the packet into a

DHCPv6 reply, replaces the options by those specified as parameters, and stores 1 in R.

When this action is applied to a non-DHCPv6 packet or an invalid DHCPv6 request

packet , it leaves the packet unchanged and stores 0 in R.

The contents of the DHCPv6_Options table control the DHCPv6 option names and val-

ues that this action supports.

Example: reg0[3] = put_dhcpv6_opts(ia_addr = aef0::4, server_id =
00:00:00:00:10:02, dns_server={ae70::1,ae70::2});

set_queue(queue_number);
Parameters: Queue number queue_number, in the range 0 to 61440.

This is a logical equivalent of the OpenFlow set_queue action. It affects packets that

egress a hypervisor through a physical interface. For nonzero queue_number, it config-

ures packet queuing to match the settings configured for the Port_Binding with

options:qdisc_queue_id matching queue_number. When queue_number is zero, it resets

queuing to the default strategy.

Example: set_queue(10);

ct_lb;
ct_lb(backends=ip[:port][,...][; hash_fields=field1,field2,...]);

With arguments, ct_lb commits the packet to the connection tracking table and DNATs

the packet’s destination IP address (and port) to the IP address or addresses (and optional

ports) specified in the backends. If multiple comma-separated IP addresses are specified,

each is given equal weight for picking the DNAT address. By default, dp_hash is used as

the OpenFlow group selection method, but if hash_fields is specified, hash is used as the

selection method, and the fields listed are used as the hash fields.

Without arguments, ct_lb sends the packet to the connection tracking table to NAT the

packets. If the packet is part of an established connection that was previously committed

to the connection tracker via ct_lb(...), it will automatically get DNAT ed to the same IP

address as the first packet in that connection.

Processing automatically moves on to the next table, as if next; were specified, and later

tables act on the packet as modified by the connection tracker. Connection tracking state

is scoped by the logical port when the action is used in a flow for a logical switch, so

overlapping addresses may be used. Connection tracking state is scoped by the logical

topology when the action is used in a flow for a router.

ct_lb_mark;
ct_lb_mark(backends=ip[:port][,...][; hash_fields=field1,field2,...]);

Same as ct_lb, except that it internally uses ct_mark to store the NAT flag, while ct_lb
uses ct_label for the same purpose.

R = dns_lookup();
Parameters: No parameters.

Open vSwitch 22.06.2 DB Schema 20.23.0 24

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Result: stored to a 1-bit subfield R.

Valid only in the ingress pipeline.

When this action is applied to a valid DNS request (a UDP packet typically directed to

port 53), it attempts to resolve the query using the contents of the DNS table. If it is suc-

cessful, it changes the packet into a DNS reply and stores 1 in R. If the action is applied

to a non-DNS packet, an invalid DNS request packet, or a valid DNS request for which

the DNS table does not supply an answer, it leaves the packet unchanged and stores 0 in

R.

Regardless of success, the action does not make any of the changes to the flow that are

necessary to direct the packet back to the requester. The logical pipeline can implement

this behavior with matches and actions in later tables.

Example: reg0[3] = dns_lookup();

Prerequisite: udp

R = put_nd_ra_opts(D1 = V1, D2 = V2, ..., Dn = Vn);
Parameters: The following IPv6 ND Router Advertisement option/value pairs as defined

in RFC 4861.

• addr_mode

Mandatory parameter which specifies the address mode flag to be set in the RA

flag options field. The value of this option is a string and the following values

can be defined - "slaac", "dhcpv6_stateful" and "dhcpv6_stateless".

• slla

Mandatory parameter which specifies the link-layer address of the interface from

which the Router Advertisement is sent.

• mtu

Optional parameter which specifies the MTU.

• prefix

Optional parameter which should be specified if the addr_mode is "slaac" or

"dhcpv6_stateless". The value should be an IPv6 prefix which will be used for

stateless IPv6 address configuration. This option can be defined multiple times.

Result: stored to a 1-bit subfield R.

Valid only in the ingress pipeline.

When this action is applied to an IPv6 Router solicitation request packet, it changes the

packet into an IPv6 Router Advertisement reply and adds the options specified in the

parameters, and stores 1 in R.

When this action is applied to a non-IPv6 Router solicitation packet or an invalid IPv6

request packet , it leaves the packet unchanged and stores 0 in R.

Example: reg0[3] = put_nd_ra_opts(addr_mode = "slaac", slla = 00:00:00:00:10:02,
prefix = aef0::/64, mtu = 1450);

set_meter(rate);
set_meter(rate, burst);

Parameters: rate limit int field rate in kbps, burst rate limits int field burst in kbps.

This action sets the rate limit for a flow.

Example: set_meter(100, 1000);

Open vSwitch 22.06.2 DB Schema 20.23.0 25

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

R = check_pkt_larger(L)
Parameters: packet length L to check for in bytes.

Result: stored to a 1-bit subfield R.

This is a logical equivalent of the OpenFlow check_pkt_larger action. If the packet is

larger than the length specified in L, it stores 1 in the subfield R.

Example: reg0[6] = check_pkt_larger(1000);

log(key=value, ...);
Causes ovn−controller to log the packet on the chassis that processes it. Packet logging

currently uses the same logging mechanism as other Open vSwitch and OVN messages,

which means that whether and where log messages appear depends on the local logging

configuration that can be configured with ovs−appctl, etc.

The log action takes zero or more of the following key-value pair arguments that control

what is logged:

name=string

An optional name for the ACL. The string is currently limited to 64 bytes.

severity=level

Indicates the severity of the event. The level is one of following (from more to

less serious): alert, warning, notice, info, or debug. If a severity is not pro-

vided, the default is info.

verdict=value

The verdict for packets matching the flow. The value must be one of allow,

deny, or reject.

meter=string

An optional rate-limiting meter to be applied to the logs. The string should refer-

ence a name entry from the Meter table. The only meter action that is appropri-

ate is drop.

fwd_group(liveness=bool, childports=port, ...);
Parameters: optional liveness, either true or false, defaulting to false; childports, a

comma-delimited list of strings denoting logical ports to load balance across.

Load balance traffic to one or more child ports in a logical switch. ovn−controller trans-

lates the fwd_group into an OpenFlow group with one bucket for each child port. If live-
ness=true is specified, it also integrates the bucket selection with BFD status on the tun-

nel interface corresponding to child port.

Example: fwd_group(liveness=true, childports="p1", "p2");

icmp4 { action; ... };
icmp4_error { action; ... };

Temporarily replaces the IPv4 packet being processed by an ICMPv4 packet and executes

each nested action on the ICMPv4 packet. Actions following these actions, if any, apply

to the original, unmodified packet.

The ICMPv4 packet that these actions operates on is initialized based on the IPv4 packet

being processed, as follows. These are default values that the nested actions will probably

want to change. Ethernet and IPv4 fields not listed here are not changed:

• ip.proto = 1 (ICMPv4)

• ip.frag = 0 (not a fragment)

• ip.ttl = 255

• icmp4.type = 3 (destination unreachable)

Open vSwitch 22.06.2 DB Schema 20.23.0 26

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

• icmp4.code = 1 (host unreachable)

icmp4_error action is expected to be used to generate an ICMPv4 packet in response to

an error in original IP packet. When this action generates the ICMPv4 packet, it also

copies the original IP datagram following the ICMPv4 header as per RFC 1122: 3.2.2.

Prerequisite: ip4

icmp6 { action; ... };
icmp6_error { action; ... };

Temporarily replaces the IPv6 packet being processed by an ICMPv6 packet and executes

each nested action on the ICMPv6 packet. Actions following the icmp6 action, if any,

apply to the original, unmodified packet.

The ICMPv6 packet that this action operates on is initialized based on the IPv6 packet

being processed, as follows. These are default values that the nested actions will probably

want to change. Ethernet and IPv6 fields not listed here are not changed:

• ip.proto = 58 (ICMPv6)

• ip.ttl = 255

• icmp6.type = 1 (destination unreachable)

• icmp6.code = 1 (administratively prohibited)

icmp6_error action is expected to be used to generate an ICMPv6 packet in response to

an error in original IPv6 packet.

Prerequisite: ip6

tcp_reset;
This action transforms the current TCP packet according to the following pseudocode:

if (tcp.ack) {
tcp.seq = tcp.ack;

} else {
tcp.ack = tcp.seq + length(tcp.payload);
tcp.seq = 0;

}
tcp.flags = RST;

Then, the action drops all TCP options and payload data, and updates the TCP checksum.

IP ttl is set to 255.

Prerequisite: tcp

reject { action; ... };
If the original packet is IPv4 or IPv6 TCP packet, it replaces it with IPv4 or IPv6 TCP

RST packet and executes the inner actions. Otherwise it replaces it with an ICMPv4 or

ICMPv6 packet and executes the inner actions.

The inner actions should not attempt to swap eth source with eth destination and IP

source with IP destination as this action implicitly does that.

trigger_event;
This action is used to allow ovs-vswitchd to report CMS related events writing them in

Controller_Event table. It is possible to associate a meter to a each event in order to not

overload pinctrl thread under heavy load; each meter is identified though a defined nam-

ing convention. Supported events:

• empty_lb_backends. This event is raised if a received packet is destined for a

load balancer VIP that has no configured backend destinations. For this event,

the event info includes the load balancer VIP, the load balancer UUID, and the

transport protocol. Associated meter: ev ent−elb

Open vSwitch 22.06.2 DB Schema 20.23.0 27

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

igmp; This action sends the packet to ovn−controller for multicast snooping.

Prerequisite: igmp

bind_vport(V, P);
Parameters: logical port string field V of type virtual, logical port string field P.

Binds the virtual logical port V and sets the chassis column and virtual_parent of the ta-

ble Port_Binding. virtual_parent is set to P.

handle_svc_check(P);
Parameters: logical port string field P.

Handles the service monitor reply received from the VIF of the logical port P. ovn−con-
troller periodically sends out the service monitor packets for the services configured in

the Service_Monitor table and this action updates the status of those services.

Example: handle_svc_check(inport);

handle_dhcpv6_reply;
Handle DHCPv6 prefix delegation advertisements/replies from a IPv6 delegation server.

ovn−controller will add an entry ipv6_ra_pd_list in the options table for each prefix

received from the delegation server

R = select(N1[=W1], N2[=W2], ...);
Parameters: Integer N1, N2..., with optional weight W1, W2, ...

Result: stored to a logical field or subfield R.

Select from a list of integers N1, N2..., each within the range 0 ˜ 65535, and store the

selected one in the field R. There must be 2 or more integers listed, each with an optional

weight, which is an integer within the range 1 ˜ 65535. If weight is not specified, it

defaults to 100. The selection method is based on the 5-tuple hash of packet header.

Processing automatically moves on to the next table, as if next; were specified. The

select action must be put as the last action of the logical flow when there are multiple

actions (actions put after select will not take effect).

Example: reg8[16..31] = select(1=20, 2=30, 3=50);

handle_dhcpv6_reply;
This action is used to parse DHCPv6 replies from IPv6 Delegation Router and managed

IPv6 Prefix delegation state machine

R = chk_lb_hairpin();
This action checks if the packet under consideration was destined to a load balancer VIP

and it is hairpinned, i.e., after load balancing the destination IP matches the source IP. If it

is so, then the 1-bit destination register R is set to 1.

R = chk_lb_hairpin_reply();
This action checks if the packet under consideration is from one of the backend IP of a

load balancer VIP and the destination IP is the load balancer VIP. If it is so, then the 1-bit

destination register R is set to 1.

R = ct_snat_to_vip;
This action sends the packet through the SNAT zone to change the source IP address of

the packet to the load balancer VIP if the original destination IP was load balancer VIP

and commits the connection. This action applies successfully only for the hairpinned traf-

fic i.e if the action chk_lb_hairpin returned success. This action doesn’t take any argu-

ments and it determines the SNAT IP internally. The packet is not automatically sent to

the next table. The caller has to execute the next; action explicitly after this action to

advance the packet to the next stage.

Open vSwitch 22.06.2 DB Schema 20.23.0 28

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

R = check_in_port_sec();
This action checks if the packet under consideration passes the inport port security

checks. If the packet fails the port security checks, then 1 is stored in the destination reg-

ister R. Else 0 is stored. The port security values to check are retrieved from the the

inport logical port.

This action should be used in the ingress logical switch pipeline.

Example: reg8[0..7] = check_in_port_sec();

R = check_out_port_sec();
This action checks if the packet under consideration passes the outport port security

checks. If the packet fails the port security checks, then 1 is stored in the destination reg-

ister R. Else 0 is stored. The port security values to check are retrieved from the the out-
port logical port.

This action should be used in the egress logical switch pipeline.

Example: reg8[0..7] = check_out_port_sec();

commit_ecmp_nh(ipv6);
Parameters: IPv4/IPv6 traffic.

This action translates to an openflow "learn" action that inserts two new flows in tables 76

and 77.

• Match on the the 5-tuple and the expected next-hop mac address in table 76:

nw_src=ip0, nw_dst=ip1, ip_proto,tp_src=l4_port0,

tp_dst=l4_port1,dl_src=ethaddr and set reg9[5].

• Match on the 5-tuple in table 77: nw_src=ip1, nw_dst=ip0, ip_proto,

tp_src=l4_port1, tp_dst=l4_port0 and set reg9[5] to 1

This action is applied if the packet arrives via ECMP route or if it is routed via an ECMP

route

R = check_ecmp_nh_mac();
This action checks if the packet under consideration matches any flow in table 76. If it is

so, then the 1-bit destination register R is set to 1.

R = check_ecmp_nh();
This action checks if the packet under consideration matches the any flow in table 77. If it

is so, then the 1-bit destination register R is set to 1.

tags: map of string-string pairs

Ke y-value pairs that provide additional information to help ovn-controller processing the logical

flow. Below are the tags used by ovn-controller.

in_out_port

In the logical flow’s "match" column, if a logical port P is compared with "inport" and the

logical flow is on a logical switch ingress pipeline, or if P is compared with "outport" and

the logical flow is on a logical switch egress pipeline, and the expression is combined

with other expressions (if any) using the operator &&, then the port P should be added as

the value in this tag. If there are multiple logical ports meeting this criteria, one of them

can be added. ovn-controller uses this information to skip parsing flows that are not

needed on the chassis. Failing to add the tag will affect efficiency, while adding wrong

value will affect correctness.

controller_meter: optional string

The name of the meter in table Meter to be used for all packets that the logical flow might send to

ovn−controller.

Open vSwitch 22.06.2 DB Schema 20.23.0 29

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

external_ids : stage-name: optional string

Human-readable name for this flow’s stage in the pipeline.

external_ids : stage-hint: optional string, containing an uuid

UUID of a OVN_Northbound record that caused this logical flow to be created. Currently used

only for attribute of logical flows to northbound ACL records.

external_ids : source: optional string

Source file and line number of the code that added this flow to the pipeline.

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 30

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Logical_DP_Group TABLE
Each row in this table represents a group of logical datapaths referenced by the logical_dp_group column

in the Logical_Flow table.

Summary:
datapaths set of weak reference to Datapath_Bindings

Details:
datapaths: set of weak reference to Datapath_Bindings

List of Datapath_Binding entries.

Open vSwitch 22.06.2 DB Schema 20.23.0 31

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Multicast_Group TABLE
The rows in this table define multicast groups of logical ports. Multicast groups allow a single packet trans-

mitted over a tunnel to a hypervisor to be delivered to multiple VMs on that hypervisor, which uses band-

width more efficiently.

Each row in this table defines a logical multicast group numbered tunnel_key within datapath, whose log-

ical ports are listed in the ports column.

Summary:
datapath Datapath_Binding
tunnel_key integer, in range 32,768 to 65,535

name string

ports set of weak reference to Port_Bindings

Details:
datapath: Datapath_Binding

The logical datapath in which the multicast group resides.

tunnel_key: integer, in range 32,768 to 65,535

The value used to designate this logical egress port in tunnel encapsulations. An index forces the

key to be unique within the datapath. The unusual range ensures that multicast group IDs do not

overlap with logical port IDs.

name: string

The logical multicast group’s name. An index forces the name to be unique within the datapath.

Logical flows in the ingress pipeline may output to the group just as for individual logical ports, by

assigning the group’s name to outport and executing an output action.

Multicast group names and logical port names share a single namespace and thus should not over-

lap (but the database schema cannot enforce this). To try to avoid conflicts, ovn−northd uses

names that begin with _MC_.

ports: set of weak reference to Port_Bindings

The logical ports included in the multicast group. All of these ports must be in the datapath logi-

cal datapath (but the database schema cannot enforce this).

Open vSwitch 22.06.2 DB Schema 20.23.0 32

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Meter TABLE
Each row in this table represents a meter that can be used for QoS or rate-limiting.

Summary:
name string (must be unique within table)

unit string, either kbps or pktps
bands set of 1 or more Meter_Bands

Details:
name: string (must be unique within table)

A name for this meter.

Names that begin with "__" (two underscores) are reserved for OVN internal use and should not

be added manually.

unit: string, either kbps or pktps
The unit for rate and burst_rate parameters in the bands entry. kbps specifies kilobits per sec-

ond, and pktps specifies packets per second.

bands: set of 1 or more Meter_Bands

The bands associated with this meter. Each band specifies a rate above which the band is to take

the action action. If multiple bands’ rates are exceeded, then the band with the highest rate among

the exceeded bands is selected.

Open vSwitch 22.06.2 DB Schema 20.23.0 33

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Meter_Band TABLE
Each row in this table represents a meter band which specifies the rate above which the configured action

should be applied. These bands are referenced by the bands column in the Meter table.

Summary:
action string, must be drop
rate integer, in range 1 to 4,294,967,295

burst_size integer, in range 0 to 4,294,967,295

Details:
action: string, must be drop

The action to execute when this band matches. The only supported action is drop.

rate: integer, in range 1 to 4,294,967,295

The rate limit for this band, in kilobits per second or bits per second, depending on whether the

parent Meter entry’s unit column specified kbps or pktps.

burst_size: integer, in range 0 to 4,294,967,295

The maximum burst allowed for the band in kilobits or packets, depending on whether kbps or

pktps was selected in the parent Meter entry’s unit column. If the size is zero, the switch is free

to select some reasonable value depending on its configuration.

Open vSwitch 22.06.2 DB Schema 20.23.0 34

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Datapath_Binding TABLE
Each row in this table represents a logical datapath, which implements a logical pipeline among the ports in

the Port_Binding table associated with it. In practice, the pipeline in a given logical datapath implements

either a logical switch or a logical router.

The main purpose of a row in this table is provide a physical binding for a logical datapath. A logical data-

path does not have a physical location, so its physical binding information is limited: just tunnel_key. The

rest of the data in this table does not affect packet forwarding.

Summary:
tunnel_key integer, in range 1 to 16,777,215 (must be unique

within table)

load_balancers set of uuids

OVN_Northbound Relationship:

external_ids : logical-switch optional string, containing an uuid

external_ids : logical-router optional string, containing an uuid

external_ids : interconn-ts optional string

Naming:

external_ids : name optional string

external_ids : name2 optional string

Common Columns:

external_ids map of string-string pairs

Details:
tunnel_key: integer, in range 1 to 16,777,215 (must be unique within table)

The tunnel key value to which the logical datapath is bound. The Tunnel Encapsulation section in

ovn−architecture(7) describes how tunnel keys are constructed for each supported encapsulation.

load_balancers: set of uuids

Not used anymore; kept for backwards compatibility of the schema.

OVN_Northbound Relationship:

Each row in Datapath_Binding is associated with some logical datapath. ovn−northd uses these keys to

track the association of a logical datapath with concepts in the OVN_Northbound database.

external_ids : logical-switch: optional string, containing an uuid

For a logical datapath that represents a logical switch, ovn−northd stores in this key the UUID of

the corresponding Logical_Switch row in the OVN_Northbound database.

external_ids : logical-router: optional string, containing an uuid

For a logical datapath that represents a logical router, ovn−northd stores in this key the UUID of

the corresponding Logical_Router row in the OVN_Northbound database.

external_ids : interconn-ts: optional string

For a logical datapath that represents a logical switch that represents a transit switch for intercon-

nection, ovn−northd stores in this key the value of the same interconn−ts key of the external_ids
column of the corresponding Logical_Switch row in the OVN_Northbound database.

Naming:

ovn−northd copies these from the name fields in the OVN_Northbound database, either from name and

external_ids:neutron:router_name in the Logical_Router table or from name and external_ids:neu-
tron:network_name in the Logical_Switch table.

external_ids : name: optional string

A name for the logical datapath.

external_ids : name2: optional string

Another name for the logical datapath.

Common Columns:

Open vSwitch 22.06.2 DB Schema 20.23.0 35

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 36

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Port_Binding TABLE
Each row in this table binds a logical port to a realization. For most logical ports, this means binding to

some physical location, for example by binding a logical port to a VIF that belongs to a VM running on a

particular hypervisor. Other logical ports, such as logical patch ports, can be realized without a specific

physical location, but their bindings are still expressed through rows in this table.

For every Logical_Switch_Port record in OVN_Northbound database, ovn−northd creates a record in

this table. ovn−northd populates and maintains every column except the chassis and virtual_parent col-

umns, which it leaves empty in new records.

ovn−controller/ovn−controller−vtep populates the chassis column for the records that identify the logical

ports that are located on its hypervisor/gateway, which ovn−controller/ovn−controller−vtep in turn finds

out by monitoring the local hypervisor’s Open_vSwitch database, which identifies logical ports via the con-

ventions described in IntegrationGuide.rst. (The exceptions are for Port_Binding records with type of

l3gateway, whose locations are identified by ovn−northd via the options:l3gateway−chassis column in

this table. ovn−controller is still responsible to populate the chassis column.)

ovn−controller also populates the virtual_parent column of records whose type is virtual.

When a chassis shuts down gracefully, it should clean up the chassis column that it previously had popu-

lated. (This is not critical because resources hosted on the chassis are equally unreachable regardless of

whether their rows are present.) To handle the case where a VM is shut down abruptly on one chassis, then

brought up again on a different one, ovn−controller/ovn−controller−vtep must overwrite the chassis col-

umn with new information.

Summary:
Core Features:

datapath Datapath_Binding
logical_port string (must be unique within table)

encap optional weak reference to Encap
additional_encap set of weak reference to Encaps

chassis optional weak reference to Chassis
additional_chassis set of weak reference to Chassis
gateway_chassis set of Gateway_Chassises

ha_chassis_group optional HA_Chassis_Group
up optional boolean

tunnel_key integer, in range 1 to 32,767

mac set of strings

port_security set of strings

type string

requested_chassis optional weak reference to Chassis
requested_additional_chassis set of weak reference to Chassis

Patch Options:

options : peer optional string

nat_addresses set of strings

L3 Gateway Options:

options : peer optional string

options : l3gateway-chassis optional string

nat_addresses set of strings

Localnet Options:

options : network_name optional string

tag optional integer, in range 1 to 4,095

L2 Gateway Options:

options : network_name optional string

options : l2gateway-chassis optional string

tag optional integer, in range 1 to 4,095

Open vSwitch 22.06.2 DB Schema 20.23.0 37

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

VTEP Options:

options : vtep-physical-switch optional string

options : vtep-logical-switch optional string

VMI (or VIF) Options:

options : requested-chassis optional string

options : activation-strategy optional string

options : additional-chassis-activated optional string

options : iface-id-ver optional string

options : qos_min_rate optional string

options : qos_max_rate optional string

options : qos_burst optional string

options : qdisc_queue_id optional string, containing an integer, in range 1 to

61,440

Distributed Gateway Port Options:

options : chassis-redirect-port optional string

Chassis Redirect Options:

options : distributed-port optional string

options : redirect-type optional string

options : always-redirect optional string

Nested Containers:

parent_port optional string

tag optional integer, in range 1 to 4,095

Virtual ports:

virtual_parent optional string

Naming:

external_ids : name optional string

Common Columns:

external_ids map of string-string pairs

Details:
Core Features:

datapath: Datapath_Binding
The logical datapath to which the logical port belongs.

logical_port: string (must be unique within table)

A logical port. For a logical switch port, this is taken from name in the OVN_Northbound data-

base’s Logical_Switch_Port table. For a logical router port, this is taken from name in the

OVN_Northbound database’s Logical_Router_port table. (This means that logical switch ports

and router port names must not share names in an OVN deployment.) OVN does not prescribe a

particular format for the logical port ID.

encap: optional weak reference to Encap
Points to preferred encapsulation configuration to transmit logical dataplane packets to this chas-

sis. The entry is reference to a Encap record.

additional_encap: set of weak reference to Encaps

Points to preferred encapsulation configuration to transmit logical dataplane packets to this addi-

tional chassis. The entry is reference to a Encap record. See also additional_chassis.

chassis: optional weak reference to Chassis
The meaning of this column depends on the value of the type column. This is the meaning for

each type

(empty string)

The physical location of the logical port. To successfully identify a chassis, this column

must be a Chassis record. This is populated by ovn−controller.

Open vSwitch 22.06.2 DB Schema 20.23.0 38

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

vtep The physical location of the hardware_vtep gateway. To successfully identify a chassis,

this column must be a Chassis record. This is populated by ovn−controller−vtep.

localnet

Always empty. A localnet port is realized on every chassis that has connectivity to the

corresponding physical network.

localport

Always empty. A localport port is present on every chassis.

l3gateway

The physical location of the L3 gateway. To successfully identify a chassis, this column

must be a Chassis record. This is populated by ovn−controller based on the value of the

options:l3gateway−chassis column in this table.

l2gateway

The physical location of this L2 gateway. To successfully identify a chassis, this column

must be a Chassis record. This is populated by ovn−controller based on the value of the

options:l2gateway−chassis column in this table.

additional_chassis: set of weak reference to Chassis
The meaning of this column is the same as for the chassis. The column is used to track an addi-

tional physical location of the logical port. Used with regular (empty type) port bindings.

gateway_chassis: set of Gateway_Chassises

A list of Gateway_Chassis.

This should only be populated for ports with type set to chassisredirect. This column defines the

list of chassis used as gateways where traffic will be redirected through.

ha_chassis_group: optional HA_Chassis_Group
This should only be populated for ports with type set to chassisredirect. This column defines the

HA chassis group with a list of HA chassis used as gateways where traffic will be redirected

through.

up: optional boolean

This is set to true whenever all OVS flows required by this Port_Binding have been installed. This

is populated by ovn−controller.

tunnel_key: integer, in range 1 to 32,767

A number that represents the logical port in the key (e.g. STT key or Geneve TLV) field carried

within tunnel protocol packets.

The tunnel ID must be unique within the scope of a logical datapath.

mac: set of strings

This column is a misnomer as it may contain MAC addresses and IP addresses. It is copied from

the addresses column in the Logical_Switch_Port table in the Northbound database. It follows

the same format as that column.

port_security: set of strings

This column controls the addresses from which the host attached to the logical port (‘‘the host’’) is

allowed to send packets and to which it is allowed to receive packets. If this column is empty, all

addresses are permitted.

It is copied from the port_security column in the Logical_Switch_Port table in the Northbound

database. It follows the same format as that column.

type: string

A type for this logical port. Logical ports can be used to model other types of connectivity into an

OVN logical switch. The following types are defined:

Open vSwitch 22.06.2 DB Schema 20.23.0 39

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

(empty string)

VM (or VIF) interface.

patch One of a pair of logical ports that act as if connected by a patch cable. Useful for connect-

ing two logical datapaths, e.g. to connect a logical router to a logical switch or to another

logical router.

l3gateway
One of a pair of logical ports that act as if connected by a patch cable across multiple

chassis. Useful for connecting a logical switch with a Gateway router (which is only resi-

dent on a particular chassis).

localnet
A connection to a locally accessible network from ovn−controller instances that have a

corresponding bridge mapping. A logical switch can have multiple localnet ports

attached. This type is used to model direct connectivity to existing networks. In this case,

each chassis should have a mapping for one of the physical networks only. Note: nothing

said above implies that a chassis cannot be plugged to multiple physical networks as long

as they belong to different switches.

localport
A connection to a local VIF. Traffic that arrives on a localport is never forwarded over a

tunnel to another chassis. These ports are present on every chassis and have the same

address in all of them. This is used to model connectivity to local services that run on

ev ery hypervisor.

l2gateway
An L2 connection to a physical network. The chassis this Port_Binding is bound to will

serve as an L2 gateway to the network named by options:network_name.

vtep A port to a logical switch on a VTEP gateway chassis. In order to get this port correctly

recognized by the OVN controller, the options:vtep−physical−switch and

options:vtep−logical−switch must also be defined.

chassisredirect
A logical port that represents a particular instance, bound to a specific chassis, of an oth-

erwise distributed parent port (e.g. of type patch). A chassisredirect port should never be

used as an inport. When an ingress pipeline sets the outport, it may set the value to a

logical port of type chassisredirect. This will cause the packet to be directed to a specific

chassis to carry out the egress pipeline. At the beginning of the egress pipeline, the out-
port will be reset to the value of the distributed port.

virtual Represents a logical port with an virtual ip. This virtual ip can be configured on a logi-

cal port (which is refered as virtual parent).

requested_chassis: optional weak reference to Chassis
This column exists so that the ovn-controller can effectively monitor all Port_Binding records

destined for it, and is a supplement to the options:requested-chassis option. The option is still

required so that the ovn-controller can check the CMS intent when the chassis pointed to does not

currently exist, which for example occurs when the ovn-controller is stopped without passing the

−restart argument. This column must be a Chassis record. This is populated by ovn−northd when

the options:requested-chassis is defined and contains a string matching the name or hostname of

an existing chassis. See also requested_additional_chassis.

requested_additional_chassis: set of weak reference to Chassis
This column exists so that the ovn-controller can effectively monitor all Port_Binding records

destined for it, and is a supplement to the options:requested-chassis option when multiple chassis

are listed. This column must be a list of Chassis records. This is populated by ovn−northd when

the options:requested-chassis is defined as a list of chassis names or hostnames. See also

requested_chassis.

Open vSwitch 22.06.2 DB Schema 20.23.0 40

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Patch Options:

These options apply to logical ports with type of patch.

options : peer: optional string

The logical_port in the Port_Binding record for the other side of the patch. The named logi-
cal_port must specify this logical_port in its own peer option. That is, the two patch logical ports

must have rev ersed logical_port and peer values.

nat_addresses: set of strings

MAC address followed by a list of SNAT and DNAT external IP addresses, followed by is_chas-
sis_resident("lport"), where lport is the name of a logical port on the same chassis where the cor-

responding NAT rules are applied. This is used to send gratuitous ARPs for SNAT and DNAT

external IP addresses via localnet, from the chassis where lport resides. Example:

80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24 is_chassis_resident("foo1"). This would result in

generation of gratuitous ARPs for IP addresses 158.36.44.22 and 158.36.44.24 with a MAC

address of 80:fa:5b:06:72:b7 from the chassis where the logical port "foo1" resides.

L3 Gateway Options:

These options apply to logical ports with type of l3gateway.

options : peer: optional string

The logical_port in the Port_Binding record for the other side of the ’l3gateway’ port. The

named logical_port must specify this logical_port in its own peer option. That is, the two ’l3gate-

way’ logical ports must have rev ersed logical_port and peer values.

options : l3gateway-chassis: optional string

The chassis in which the port resides.

nat_addresses: set of strings

MAC address of the l3gateway port followed by a list of SNAT and DNAT external IP addresses.

This is used to send gratuitous ARPs for SNAT and DNAT external IP addresses via localnet.
Example: 80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24. This would result in generation of gratu-

itous ARPs for IP addresses 158.36.44.22 and 158.36.44.24 with a MAC address of

80:fa:5b:06:72:b7. This is used in OVS version 2.8 and later versions.

Localnet Options:

These options apply to logical ports with type of localnet.

options : network_name: optional string

Required. ovn−controller uses the configuration entry ovn−bridge−mappings to determine how

to connect to this network. ovn−bridge−mappings is a list of network names mapped to a local

OVS bridge that provides access to that network. An example of configuring ovn−bridge−map-
pings would be: .IP

$ ovs−vsctl set open . external−ids:ovn−bridge−mappings=physnet1:br−eth0,physnet2:br−eth1

When a logical switch has a localnet port attached, every chassis that may have a local vif

attached to that logical switch must have a bridge mapping configured to reach that localnet. Traf-

fic that arrives on a localnet port is never forwarded over a tunnel to another chassis. If there are

multiple localnet ports in a logical switch, each chassis should only have a single bridge mapping

for one of the physical networks. Note: In case of multiple localnet ports, to provide interconnec-

tivity between all VIFs located on different chassis with different fabric connectivity, the fabric

should implement some form of routing between the segments.

tag: optional integer, in range 1 to 4,095

If set, indicates that the port represents a connection to a specific VLAN on a locally accessible

network. The VLAN ID is used to match incoming traffic and is also added to outgoing traffic.

L2 Gateway Options:

These options apply to logical ports with type of l2gateway.

Open vSwitch 22.06.2 DB Schema 20.23.0 41

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

options : network_name: optional string

Required. ovn−controller uses the configuration entry ovn−bridge−mappings to determine how

to connect to this network. ovn−bridge−mappings is a list of network names mapped to a local

OVS bridge that provides access to that network. An example of configuring ovn−bridge−map-
pings would be: .IP

$ ovs−vsctl set open . external−ids:ovn−bridge−mappings=physnet1:br−eth0,physnet2:br−eth1

When a logical switch has a l2gateway port attached, the chassis that the l2gateway port is bound

to must have a bridge mapping configured to reach the network identified by network_name.

options : l2gateway-chassis: optional string

Required. The chassis in which the port resides.

tag: optional integer, in range 1 to 4,095

If set, indicates that the gateway is connected to a specific VLAN on the physical network. The

VLAN ID is used to match incoming traffic and is also added to outgoing traffic.

VTEP Options:

These options apply to logical ports with type of vtep.

options : vtep-physical-switch: optional string

Required. The name of the VTEP gateway.

options : vtep-logical-switch: optional string

Required. A logical switch name connected by the VTEP gateway. Must be set when type is vtep.

VMI (or VIF) Options:

These options apply to logical ports with type having (empty string)

options : requested-chassis: optional string

If set, identifies a specific chassis (by name or hostname) that is allowed to bind this port. Using

this option will prevent thrashing between two chassis trying to bind the same port during a live

migration. It can also prevent similar thrashing due to a mis-configuration, if a port is accidentally

created on more than one chassis.

If set to a comma separated list, the first entry identifies the main chassis and the rest are one or

more additional chassis that are allowed to bind the same port.

When multiple chassis are set for the port, and the logical switch is connected to an external net-

work through a localnet port, tunneling is enforced for the port to guarantee delivery of packets

directed to the port to all its locations. This has MTU implications because the network used for

tunneling must have MTU larger than localnet for stable connectivity.

options : activation-strategy: optional string

If used with multiple chassis set in requested-chassis, specifies an activation strategy for all addi-

tional chassis. By default, no activation strategy is used, meaning additional port locations are

immediately available for use. When set to "rarp", the port is blocked for ingress and egress com-

munication until a RARP packet is sent from a new location. The "rarp" strategy is useful in live

migration scenarios for virtual machines.

options : additional-chassis-activated: optional string

When activation-strategy is set, this option indicates that the port was activated using the strategy

specified.

options : iface-id-ver: optional string

If set, this port will be bound by ovn−controller only if this same key and value is configured in

the external_ids column in the Open_vSwitch database’s Interface table.

options : qos_min_rate: optional string

If set, indicates the minimum guaranteed rate available for data sent from this interface, in bit/s.

Open vSwitch 22.06.2 DB Schema 20.23.0 42

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

options : qos_max_rate: optional string

If set, indicates the maximum rate for data sent from this interface, in bit/s. The traffic will be

shaped according to this limit.

options : qos_burst: optional string

If set, indicates the maximum burst size for data sent from this interface, in bits.

options : qdisc_queue_id: optional string, containing an integer, in range 1 to 61,440

Indicates the queue number on the physical device. This is same as the queue_id used in Open-

Flow in struct ofp_action_enqueue.

Distributed Gateway Port Options:

These options apply to the distributed parent ports of logical ports with type of chasssisredirect.

options : chassis-redirect-port: optional string

The name of the chassis redirect port derived from this port if this port is a distributed parent of a

chassis redirect port.

Chassis Redirect Options:

These options apply to logical ports with type of chassisredirect.

options : distributed-port: optional string

The name of the distributed port for which this chassisredirect port represents a particular

instance.

options : redirect-type: optional string

The value is copied from the column options in the OVN_Northbound database’s Logi-
cal_Router_Port table for the distributed parent of this port.

options : always-redirect: optional string

A boolean option that is set to true if the distributed parent of this chassis redirect port does not

need distributed processing.

Nested Containers:

These columns support containers nested within a VM. Specifically, they are used when type is empty and

logical_port identifies the interface of a container spawned inside a VM. They are empty for containers or

VMs that run directly on a hypervisor.

parent_port: optional string

This is taken from parent_name in the OVN_Northbound database’s Logical_Switch_Port table.

tag: optional integer, in range 1 to 4,095

Identifies the VLAN tag in the network traffic associated with that container’s network interface.

This column is used for a different purpose when type is localnet (see Localnet Options, above)

or l2gateway (see L2 Gateway Options, above).

Virtual ports:

virtual_parent: optional string

This column is set by ovn−controller with one of the value from the options:virtual-parents in

the OVN_Northbound database’s Logical_Switch_Port table when the OVN action bind_vport is

executed. ovn−controller also sets the chassis column when it executes this action with its chassis

id.

ovn−controller sets this column only if the type is "virtual".

Naming:

external_ids : name: optional string

For a logical switch port, ovn−northd copies this from external_ids:neutron:port_name in the

Logical_Switch_Port table in the OVN_Northbound database, if it is a nonempty string.

Open vSwitch 22.06.2 DB Schema 20.23.0 43

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

For a logical switch port, ovn−northd does not currently set this key.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

The ovn−northd program populates this column with all entries into the external_ids column of

the Logical_Switch_Port and Logical_Router_Port tables of the OVN_Northbound database.

Open vSwitch 22.06.2 DB Schema 20.23.0 44

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

MAC_Binding TABLE
Each row in this table specifies a binding from an IP address to an Ethernet address that has been discov-

ered through ARP (for IPv4) or neighbor discovery (for IPv6). This table is primarily used to discover bind-

ings on physical networks, because IP-to-MAC bindings for virtual machines are usually populated stati-

cally into the Port_Binding table.

This table expresses a functional relationship: MAC_Binding(logical_port, ip) = mac.

In outline, the lifetime of a logical router’s MAC binding looks like this:

1. On hypervisor 1, a logical router determines that a packet should be forwarded to IP

address A on one of its router ports. It uses its logical flow table to determine that A lacks a

static IP-to-MAC binding and the get_arp action to determine that it lacks a dynamic IP-

to-MAC binding.

2. Using an OVN logical arp action, the logical router generates and sends a broadcast ARP

request to the router port. It drops the IP packet.

3. The logical switch attached to the router port delivers the ARP request to all of its ports. (It

might make sense to deliver it only to ports that have no static IP-to-MAC bindings, but this

could also be surprising behavior.)

4. A host or VM on hypervisor 2 (which might be the same as hypervisor 1) attached to the

logical switch owns the IP address in question. It composes an ARP reply and unicasts it to

the logical router port’s Ethernet address.

5. The logical switch delivers the ARP reply to the logical router port.

6. The logical router flow table executes a put_arp action. To record the IP-to-MAC binding,

ovn−controller adds a row to the MAC_Binding table.

7. On hypervisor 1, ovn−controller receives the updated MAC_Binding table from the OVN

southbound database. The next packet destined to A through the logical router is sent

directly to the bound Ethernet address.

Summary:
logical_port string

ip string

mac string

datapath Datapath_Binding

Details:
logical_port: string

The logical port on which the binding was discovered.

ip: string

The bound IP address.

mac: string

The Ethernet address to which the IP is bound.

datapath: Datapath_Binding
The logical datapath to which the logical port belongs.

Open vSwitch 22.06.2 DB Schema 20.23.0 45

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

DHCP_Options TABLE
Each row in this table stores the DHCP Options supported by native OVN DHCP. ovn−northd populates

this table with the supported DHCP options. ovn−controller looks up this table to get the DHCP codes of

the DHCP options defined in the "put_dhcp_opts" action. Please refer to the RFC 2132

"https://tools.ietf.org/html/rfc2132" for the possible list of DHCP options that can be defined here.

Summary:
name string

code integer, in range 0 to 254

type string, one of bool, domains, host_id, ipv4,

static_routes, str, uint16, uint32, or uint8

Details:
name: string

Name of the DHCP option.

Example. name="router"

code: integer, in range 0 to 254

DHCP option code for the DHCP option as defined in the RFC 2132.

Example. code=3

type: string, one of bool, domains, host_id, ipv4, static_routes, str, uint16, uint32, or uint8
Data type of the DHCP option code.

value: bool
This indicates that the value of the DHCP option is a bool.

Example. "name=ip_forward_enable", "code=19", "type=bool".

put_dhcp_opts(..., ip_forward_enable = 1,...)

value: uint8
This indicates that the value of the DHCP option is an unsigned int8 (8 bits)

Example. "name=default_ttl", "code=23", "type=uint8".

put_dhcp_opts(..., default_ttl = 50,...)

value: uint16
This indicates that the value of the DHCP option is an unsigned int16 (16 bits).

Example. "name=mtu", "code=26", "type=uint16".

put_dhcp_opts(..., mtu = 1450,...)

value: uint32
This indicates that the value of the DHCP option is an unsigned int32 (32 bits).

Example. "name=lease_time", "code=51", "type=uint32".

put_dhcp_opts(..., lease_time = 86400,...)

value: ipv4
This indicates that the value of the DHCP option is an IPv4 address or addresses.

Example. "name=router", "code=3", "type=ipv4".

put_dhcp_opts(..., router = 10.0.0.1,...)

Example. "name=dns_server", "code=6", "type=ipv4".

put_dhcp_opts(..., dns_server = {8.8.8.8 7.7.7.7},...)

value: static_routes
This indicates that the value of the DHCP option contains a pair of IPv4 route and next

hop addresses.

Open vSwitch 22.06.2 DB Schema 20.23.0 46

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Example. "name=classless_static_route", "code=121", "type=static_routes".

put_dhcp_opts(..., classless_static_route = {30.0.0.0/24,10.0.0.4,0.0.0.0/0,10.0.0.1}...)

value: str
This indicates that the value of the DHCP option is a string.

Example. "name=host_name", "code=12", "type=str".

value: host_id
This indicates that the value of the DHCP option is a host_id. It can either be a

host_name or an IP address.

Example. "name=tftp_server", "code=66", "type=host_id".

value: domains
This indicates that the value of the DHCP option is a domain name or a comma separated

list of domain names.

Example. "name=domain_search_list", "code=119", "type=domains".

Open vSwitch 22.06.2 DB Schema 20.23.0 47

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

DHCPv6_Options TABLE
Each row in this table stores the DHCPv6 Options supported by native OVN DHCPv6. ovn−northd popu-

lates this table with the supported DHCPv6 options. ovn−controller looks up this table to get the DHCPv6

codes of the DHCPv6 options defined in the put_dhcpv6_opts action. Please refer to RFC 3315 and RFC

3646 for the list of DHCPv6 options that can be defined here.

Summary:
name string

code integer, in range 0 to 254

type string, one of ipv6, mac, or str

Details:
name: string

Name of the DHCPv6 option.

Example. name="ia_addr"

code: integer, in range 0 to 254

DHCPv6 option code for the DHCPv6 option as defined in the appropriate RFC.

Example. code=3

type: string, one of ipv6, mac, or str
Data type of the DHCPv6 option code.

value: ipv6
This indicates that the value of the DHCPv6 option is an IPv6 address(es).

Example. "name=ia_addr", "code=5", "type=ipv6".

put_dhcpv6_opts(..., ia_addr = ae70::4,...)

value: str
This indicates that the value of the DHCPv6 option is a string.

Example. "name=domain_search", "code=24", "type=str".

put_dhcpv6_opts(..., domain_search = ovn.domain,...)

value: mac
This indicates that the value of the DHCPv6 option is a MAC address.

Example. "name=server_id", "code=2", "type=mac".

put_dhcpv6_opts(..., server_id = 01:02:03:04L05:06,...)

Open vSwitch 22.06.2 DB Schema 20.23.0 48

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Connection TABLE
Configuration for a database connection to an Open vSwitch database (OVSDB) client.

This table primarily configures the Open vSwitch database server (ovsdb−server).

The Open vSwitch database server can initiate and maintain active connections to remote clients. It can also

listen for database connections.

Summary:
Core Features:

target string (must be unique within table)

read_only boolean

role string

Client Failure Detection and Handling:

max_backoff optional integer, at least 1,000

inactivity_probe optional integer

Status:

is_connected boolean

status : last_error optional string

status : state optional string, one of ACTIVE, BACKOFF, CON-
NECTING, IDLE, or VOID

status : sec_since_connect optional string, containing an integer, at least 0

status : sec_since_disconnect optional string, containing an integer, at least 0

status : locks_held optional string

status : locks_waiting optional string

status : locks_lost optional string

status : n_connections optional string, containing an integer, at least 2

status : bound_port optional string, containing an integer

Common Columns:

external_ids map of string-string pairs

other_config map of string-string pairs

Details:
Core Features:

target: string (must be unique within table)

Connection methods for clients.

The following connection methods are currently supported:

ssl:host[:port]

The specified SSL port on the given host, which can either be a DNS name (if built with

unbound library) or an IP address. A valid SSL configuration must be provided when this

form is used, this configuration can be specified via command-line options or the SSL ta-

ble.

If port is not specified, it defaults to 6640.

SSL support is an optional feature that is not always built as part of Open vSwitch.

tcp:host[:port]

The specified TCP port on the given host, which can either be a DNS name (if built with

unbound library) or an IP address (IPv4 or IPv6). If host is an IPv6 address, wrap it in

square brackets, e.g. tcp:[::1]:6640.

If port is not specified, it defaults to 6640.

pssl:[port][:host]

Listens for SSL connections on the specified TCP port. Specify 0 for port to have the ker-

nel automatically choose an available port. If host, which can either be a DNS name (if

built with unbound library) or an IP address, is specified, then connections are restricted

to the resolved or specified local IP address (either IPv4 or IPv6 address). If host is an

Open vSwitch 22.06.2 DB Schema 20.23.0 49

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

IPv6 address, wrap in square brackets, e.g. pssl:6640:[::1]. If host is not specified then it

listens only on IPv4 (but not IPv6) addresses. A valid SSL configuration must be pro-

vided when this form is used, this can be specified either via command-line options or the

SSL table.

If port is not specified, it defaults to 6640.

SSL support is an optional feature that is not always built as part of Open vSwitch.

ptcp:[port][:host]

Listens for connections on the specified TCP port. Specify 0 for port to have the kernel

automatically choose an available port. If host, which can either be a DNS name (if built

with unbound library) or an IP address, is specified, then connections are restricted to the

resolved or specified local IP address (either IPv4 or IPv6 address). If host is an IPv6

address, wrap it in square brackets, e.g. ptcp:6640:[::1]. If host is not specified then it lis-

tens only on IPv4 addresses.

If port is not specified, it defaults to 6640.

When multiple clients are configured, the target values must be unique. Duplicate target values

yield unspecified results.

read_only: boolean

true to restrict these connections to read-only transactions, false to allow them to modify the data-

base.

role: string

String containing role name for this connection entry.

Client Failure Detection and Handling:

max_backoff: optional integer, at least 1,000

Maximum number of milliseconds to wait between connection attempts. Default is implementa-

tion-specific.

inactivity_probe: optional integer

Maximum number of milliseconds of idle time on connection to the client before sending an inac-

tivity probe message. If Open vSwitch does not communicate with the client for the specified

number of seconds, it will send a probe. If a response is not received for the same additional

amount of time, Open vSwitch assumes the connection has been broken and attempts to reconnect.

Default is implementation-specific. A value of 0 disables inactivity probes.

Status:

Ke y-value pair of is_connected is always updated. Other key-value pairs in the status columns may be

updated depends on the target type.

When target specifies a connection method that listens for inbound connections (e.g. ptcp: or punix:),
both n_connections and is_connected may also be updated while the remaining key-value pairs are omit-

ted.

On the other hand, when target specifies an outbound connection, all key-value pairs may be updated,

except the above-mentioned two key-value pairs associated with inbound connection targets. They are omit-

ted.

is_connected: boolean

true if currently connected to this client, false otherwise.

status : last_error: optional string

A human-readable description of the last error on the connection to the manager; i.e. str-
error(errno). This key will exist only if an error has occurred.

status : state: optional string, one of ACTIVE, BACKOFF, CONNECTING, IDLE, or VOID
The state of the connection to the manager:

Open vSwitch 22.06.2 DB Schema 20.23.0 50

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

VOID Connection is disabled.

BACKOFF
Attempting to reconnect at an increasing period.

CONNECTING
Attempting to connect.

ACTIVE
Connected, remote host responsive.

IDLE Connection is idle. Waiting for response to keep-alive.

These values may change in the future. They are provided only for human consumption.

status : sec_since_connect: optional string, containing an integer, at least 0

The amount of time since this client last successfully connected to the database (in seconds). Value

is empty if client has never successfully been connected.

status : sec_since_disconnect: optional string, containing an integer, at least 0

The amount of time since this client last disconnected from the database (in seconds). Value is

empty if client has never disconnected.

status : locks_held: optional string

Space-separated list of the names of OVSDB locks that the connection holds. Omitted if the con-

nection does not hold any locks.

status : locks_waiting: optional string

Space-separated list of the names of OVSDB locks that the connection is currently waiting to

acquire. Omitted if the connection is not waiting for any locks.

status : locks_lost: optional string

Space-separated list of the names of OVSDB locks that the connection has had stolen by another

OVSDB client. Omitted if no locks have been stolen from this connection.

status : n_connections: optional string, containing an integer, at least 2

When target specifies a connection method that listens for inbound connections (e.g. ptcp: or

pssl:) and more than one connection is actually active, the value is the number of active connec-

tions. Otherwise, this key-value pair is omitted.

status : bound_port: optional string, containing an integer

When target is ptcp: or pssl:, this is the TCP port on which the OVSDB server is listening. (This

is particularly useful when target specifies a port of 0, allowing the kernel to choose any available

port.)

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

other_config: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 51

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

SSL TABLE
SSL configuration for ovn-sb database access.

Summary:
private_key string

certificate string

ca_cert string

bootstrap_ca_cert boolean

ssl_protocols string

ssl_ciphers string

Common Columns:

external_ids map of string-string pairs

Details:
private_key: string

Name of a PEM file containing the private key used as the switch’s identity for SSL connections to

the controller.

certificate: string

Name of a PEM file containing a certificate, signed by the certificate authority (CA) used by the

controller and manager, that certifies the switch’s private key, identifying a trustworthy switch.

ca_cert: string

Name of a PEM file containing the CA certificate used to verify that the switch is connected to a

trustworthy controller.

bootstrap_ca_cert: boolean

If set to true, then Open vSwitch will attempt to obtain the CA certificate from the controller on

its first SSL connection and save it to the named PEM file. If it is successful, it will immediately

drop the connection and reconnect, and from then on all SSL connections must be authenticated

by a certificate signed by the CA certificate thus obtained. This option exposes the SSL connec-
tion to a man−in−the−middle attack obtaining the initial CA certificate. It may still be useful

for bootstrapping.

ssl_protocols: string

List of SSL protocols to be enabled for SSL connections. The default when this option is omitted

is TLSv1,TLSv1.1,TLSv1.2.

ssl_ciphers: string

List of ciphers (in OpenSSL cipher string format) to be supported for SSL connections. The

default when this option is omitted is HIGH:!aNULL:!MD5.

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 52

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

DNS TABLE
Each row in this table stores the DNS records. The OVN action dns_lookup uses this table for DNS resolu-

tion.

Summary:
records map of string-string pairs

datapaths set of 1 or more Datapath_Bindings

Common Columns:

external_ids map of string-string pairs

Details:
records: map of string-string pairs

Ke y-value pair of DNS records with DNS query name as the key and a string of IP address(es)

separated by comma or space as the value. ovn-northd stores the DNS query name in all lowercase

in order to facilitate case-insensitive lookups.

Example: "vm1.ovn.org" = "10.0.0.4 aef0::4"

datapaths: set of 1 or more Datapath_Bindings

The DNS records defined in the column records will be applied only to the DNS queries originat-

ing from the datapaths defined in this column.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Open vSwitch 22.06.2 DB Schema 20.23.0 53

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

RBAC_Role TABLE
Role table for role-based access controls.

Summary:
name string

permissions map of string-weak reference to RBAC_Permission
pairs

Details:
name: string

The role name, corresponding to the role column in the Connection table.

permissions: map of string-weak reference to RBAC_Permission pairs

A mapping of table names to rows in the RBAC_Permission table.

Open vSwitch 22.06.2 DB Schema 20.23.0 54

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

RBAC_Permission TABLE
Permissions table for role-based access controls.

Summary:
table string

authorization set of strings

insert_delete boolean

update set of strings

Details:
table: string

Name of table to which this row applies.

authorization: set of strings

Set of strings identifying columns and column:key pairs to be compared with client ID. At least

one match is required in order to be authorized. A zero-length string is treated as a special value

indicating all clients should be considered authorized.

insert_delete: boolean

When "true", row insertions and authorized row deletions are permitted.

update: set of strings

Set of strings identifying columns and column:key pairs that authorized clients are allowed to

modify.

Open vSwitch 22.06.2 DB Schema 20.23.0 55

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Gateway_Chassis TABLE
Association of Port_Binding rows of type chassisredirect to a Chassis. The traffic going out through a

specific chassisredirect port will be redirected to a chassis, or a set of them in high availability configura-

tions.

Summary:
name string (must be unique within table)

chassis optional weak reference to Chassis
priority integer, in range 0 to 32,767

options map of string-string pairs

Common Columns:

external_ids map of string-string pairs

Details:
name: string (must be unique within table)

Name of the Gateway_Chassis.

A suggested, but not required naming convention is ${port_name}_${chassis_name}.

chassis: optional weak reference to Chassis
The Chassis to which we send the traffic.

priority: integer, in range 0 to 32,767

This is the priority the specific Chassis among all Gateway_Chassis belonging to the same

Port_Binding.

options: map of string-string pairs

Reserved for future use.

Common Columns:

The overall purpose of these columns is described under Common Columns at the beginning of this docu-

ment.

external_ids: map of string-string pairs

Open vSwitch 22.06.2 DB Schema 20.23.0 56

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

HA_Chassis TABLE
Summary:

chassis optional weak reference to Chassis
priority integer, in range 0 to 32,767

Common Columns:

external_ids map of string-string pairs

Details:
chassis: optional weak reference to Chassis

The Chassis which provides the HA functionality.

priority: integer, in range 0 to 32,767

Priority of the HA chassis. Chassis with highest priority will be the master in the HA chassis

group.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Open vSwitch 22.06.2 DB Schema 20.23.0 57

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

HA_Chassis_Group TABLE
Table representing a group of chassis which can provide High availability services. Each chassis in the

group is represented by the table HA_Chassis. The HA chassis with highest priority will be the master of

this group. If the master chassis failover is detected, the HA chassis with the next higher priority takes over

the responsibility of providing the HA. If ha_chassis_group column of the table Port_Binding references

this table, then this HA chassis group provides the gateway functionality and redirects the gateway traffic to

the master of this group.

Summary:
name string (must be unique within table)

ha_chassis set of HA_Chassises

ref_chassis set of weak reference to Chassis
Common Columns:

external_ids map of string-string pairs

Details:
name: string (must be unique within table)

Name of the HA_Chassis_Group. Name should be unique.

ha_chassis: set of HA_Chassises

A list of HA_Chassis which belongs to this group.

ref_chassis: set of weak reference to Chassis
The set of Chassis that reference this HA chassis group. To determine the correct Chassis, find the

chassisredirect type Port_Binding that references this HA_Chassis_Group. This Port_Binding
is derived from some particular logical router. Starting from that LR, find the set of all logical

switches and routers connected to it, directly or indirectly, across router ports that link one LRP to

another or to a LSP. For each LSP in these logical switches, find the corresponding Port_Binding
and add its bound Chassis (if any) to ref_chassis.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Open vSwitch 22.06.2 DB Schema 20.23.0 58

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Controller_Event TABLE
Database table used by ovn−controller to report CMS related events. Please note there is no guarantee a

given event is written exactly once in the db. It is CMS responsibility to squash duplicated lines or to filter

out duplicated events

Summary:
ev ent_type string, must be empty_lb_backends
ev ent_info map of string-string pairs

chassis optional weak reference to Chassis
seq_num integer

Details:
ev ent_type: string, must be empty_lb_backends

Event type occurred

ev ent_info: map of string-string pairs

Ke y-value pairs used to specify event info to the CMS. Possible values are:

• vip: VIP reported for the empty_lb_backends ev ent

• protocol: Transport protocol reported for the empty_lb_backends ev ent

• load_balancer: UUID of the load balancer reported for the empty_lb_backends ev ent

chassis: optional weak reference to Chassis
This column is a Chassis record to identify the chassis that has managed a given event.

seq_num: integer

Event sequence number. Global counter for controller generated events. It can be used by the CMS

to detect possible duplication of the same event.

Open vSwitch 22.06.2 DB Schema 20.23.0 59

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

IP_Multicast TABLE
IP Multicast configuration options. For now only applicable to IGMP.

Summary:
datapath weak reference to Datapath_Binding (must be

unique within table)

enabled optional boolean

querier optional boolean

table_size optional integer

idle_timeout optional integer

query_interval optional integer

seq_no integer

Querier configuration options:

eth_src string

ip4_src string

ip6_src string

query_max_resp optional integer

Details:
datapath: weak reference to Datapath_Binding (must be unique within table)

Datapath_Binding entry for which these configuration options are defined.

enabled: optional boolean

Enables/disables multicast snooping. Default: disabled.

querier: optional boolean

Enables/disables multicast querying. If enabled then multicast querying is enabled by default.

table_size: optional integer

Limits the number of multicast groups that can be learned. Default: 2048 groups per datapath.

idle_timeout: optional integer

Configures the idle timeout (in seconds) for IP multicast groups if multicast snooping is enabled.

Default: 300 seconds.

query_interval: optional integer

Configures the interval (in seconds) for sending multicast queries if snooping and querier are

enabled. Default: idle_timeout/2 seconds.

seq_no: integer

ovn−controller reads this value and flushes all learned multicast groups when it detects that

seq_no was changed.

Querier configuration options:

The ovn−controller process that runs on OVN hypervisor nodes uses the following columns to determine

field values in IGMP/MLD queries that it originates:

eth_src: string

Source Ethernet address.

ip4_src: string

Source IPv4 address.

ip6_src: string

Source IPv6 address.

query_max_resp: optional integer

Value (in seconds) to be used as "max-response" field in multicast queries. Default: 1 second.

Open vSwitch 22.06.2 DB Schema 20.23.0 60

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

IGMP_Group TABLE
Contains learned IGMP groups indexed by address/datapath/chassis.

Summary:
address string

datapath optional weak reference to Datapath_Binding
chassis optional weak reference to Chassis
ports set of weak reference to Port_Bindings

Details:
address: string

Destination IPv4 address for the IGMP group.

datapath: optional weak reference to Datapath_Binding
Datapath to which this IGMP group belongs.

chassis: optional weak reference to Chassis
Chassis to which this IGMP group belongs.

ports: set of weak reference to Port_Bindings

The destination port bindings for this IGMP group.

Open vSwitch 22.06.2 DB Schema 20.23.0 61

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Service_Monitor TABLE
Each row in this table configures monitoring a service for its liveness. The service can be an IPv4 TCP or

UDP service. ovn−controller periodically sends out service monitor packets and updates the status of the

service. Service monitoring for IPv6 services is not supported.

ovn−northd uses this feature to implement the load balancer health check feature offered to the CMS

through the northbound database.

Summary:
Configuration:

ip string

protocol optional string, either tcp or udp
port integer, in range 0 to 65,535

logical_port string

src_mac string

src_ip string

options : interval optional string, containing an integer

options : timeout optional string, containing an integer

options : success_count optional string, containing an integer

options : failure_count optional string, containing an integer

Status Reporting:

status optional string, one of error, offline, or online
Common Columns:

external_ids map of string-string pairs

Details:
Configuration:

ovn−northd sets these columns and values to configure the service monitor.

ip: string

IP of the service to be monitored. Only IPv4 is supported.

protocol: optional string, either tcp or udp
The protocol of the service.

port: integer, in range 0 to 65,535

The TCP or UDP port of the service.

logical_port: string

The VIF of the logical port on which the service is running. The ovn−controller that binds this

logical_port monitors the service by sending periodic monitor packets.

src_mac: string

Source Ethernet address to use in the service monitor packet.

src_ip: string

Source IPv4 address to use in the service monitor packet.

options : interval: optional string, containing an integer

The interval, in seconds, between service monitor checks.

options : timeout: optional string, containing an integer

The time, in seconds, after which the service monitor check times out.

options : success_count: optional string, containing an integer

The number of successful checks after which the service is considered online.

options : failure_count: optional string, containing an integer

The number of failure checks after which the service is considered offline.

Status Reporting:

The ovn−controller on the chassis that hosts the logical_port updates this column to report the service’s

Open vSwitch 22.06.2 DB Schema 20.23.0 62

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

status.

status: optional string, one of error, offline, or online
For TCP service, ovn−controller sends a SYN to the service and expects an ACK response to

consider the service to be online.

For UDP service, ovn−controller sends a UDP packet to the service and doesn’t expect any reply.

If it receives an ICMP reply, then it considers the service to be offline.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Open vSwitch 22.06.2 DB Schema 20.23.0 63

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Load_Balancer TABLE
Each row represents a load balancer.

Summary:
name string

vips map of string-string pairs

protocol optional string, one of sctp, tcp, or udp
datapaths set of Datapath_Bindings

Load_Balancer options:

options : hairpin_snat_ip optional string

options : hairpin_orig_tuple optional string, either true or false
Common Columns:

external_ids map of string-string pairs

Details:
name: string

A name for the load balancer. This name has no special meaning or purpose other than to provide

convenience for human interaction with the ovn-nb database.

vips: map of string-string pairs

A map of virtual IP addresses (and an optional port number with : as a separator) associated with

this load balancer and their corresponding endpoint IP addresses (and optional port numbers with :
as separators) separated by commas.

protocol: optional string, one of sctp, tcp, or udp
Valid protocols are tcp, udp, or sctp. This column is useful when a port number is provided as

part of the vips column. If this column is empty and a port number is provided as part of vips col-

umn, OVN assumes the protocol to be tcp.

datapaths: set of Datapath_Bindings

Datapaths to which this load balancer applies to.

Load_Balancer options:

options : hairpin_snat_ip: optional string

IP to be used as source IP for packets that have been hair-pinned after load balancing. This value is

automatically populated by ovn−northd.

options : hairpin_orig_tuple: optional string, either true or false
This value is automatically set to true by ovn−northd when original destination IP and transport

port of the load balanced packets are stored in registers reg1, reg2, xxreg1.

Common Columns:

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Open vSwitch 22.06.2 DB Schema 20.23.0 64

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

BFD TABLE
Contains BFD parameter for ovn-controller bfd configuration.

Summary:
Configuration:

src_port integer, in range 49,152 to 65,535

disc integer

logical_port string

dst_ip string

min_tx integer

min_rx integer

detect_mult integer

options map of string-string pairs

external_ids map of string-string pairs

Status Reporting:

status string, one of admin_down, down, init, or up

Details:
Configuration:

src_port: integer, in range 49,152 to 65,535

udp source port used in bfd control packets. The source port MUST be in the range 49152 through

65535 (RFC5881 section 4).

disc: integer

A unique, nonzero discriminator value generated by the transmitting system, used to demultiplex

multiple BFD sessions between the same pair of systems.

logical_port: string

OVN logical port when BFD engine is running.

dst_ip: string

BFD peer IP address.

min_tx: integer

This is the minimum interval, in milliseconds, that the local system would like to use when trans-

mitting BFD Control packets, less any jitter applied. The value zero is reserved.

min_rx: integer

This is the minimum interval, in milliseconds, between received BFD Control packets that this

system is capable of supporting, less any jitter applied by the sender. If this value is zero, the trans-

mitting system does not want the remote system to send any periodic BFD Control packets.

detect_mult: integer

Detection time multiplier. The negotiated transmit interval, multiplied by this value, provides the

Detection Time for the receiving system in Asynchronous mode.

options: map of string-string pairs

Reserved for future use.

external_ids: map of string-string pairs

See External IDs at the beginning of this document.

Status Reporting:

status: string, one of admin_down, down, init, or up
BFD port logical states. Possible values are:

• admin_down

• down

• init

Open vSwitch 22.06.2 DB Schema 20.23.0 65

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

• up

Open vSwitch 22.06.2 DB Schema 20.23.0 66

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

FDB TABLE
This table is primarily used to learn the MACs observed on a VIF which belongs to a Logical_Switch_Port
record in OVN_Northbound whose port security is disabled and ’unknown’ address set. If port security is

disabled on a Logical_Switch_Port record, OVN should allow traffic with any source mac from the VIF.

This table will be used to deliver a packet to the VIF, If a packet’s eth.dst is learnt.

Summary:
mac string

dp_key integer, in range 1 to 16,777,215

port_key integer, in range 1 to 16,777,215

Details:
mac: string

The learnt mac address.

dp_key: integer, in range 1 to 16,777,215

The key of the datapath on which this FDB was learnt.

port_key: integer, in range 1 to 16,777,215

The key of the port binding on which this FDB was learnt.

Open vSwitch 22.06.2 DB Schema 20.23.0 67

ovn-sb(5) Open vSwitch Manual ovn-sb(5)

Static_MAC_Binding TABLE
Each record represents a Static_MAC_Binding entry for a logical router.

Summary:
logical_port string

ip string

mac string

override_dynamic_mac boolean

datapath Datapath_Binding

Details:
logical_port: string

The logical router port for the binding.

ip: string

The bound IP address.

mac: string

The Ethernet address to which the IP is bound.

override_dynamic_mac: boolean

Override dynamically learnt MACs.

datapath: Datapath_Binding
The logical datapath to which the logical router port belongs.

Open vSwitch 22.06.2 DB Schema 20.23.0 68

